首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two‐step synthetic procedure is designed for preparing new flame‐retardant methacrylic monomers containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) as a substituent side group. DOPO and methacrylate moieties are linked by linear aliphatic hydrocarbon spacers (3 to 11 carbon atoms). Copolymerization with methyl methacrylate is carried out leading to copolymers containing between 2 and 10 wt% phosphorus. All homo‐ and copolymers exhibit a unique glass transition temperature (Tg ). A new group contribution for DOPO‐based substituent is extracted that leads to reasonable estimations of Tg s of other published polymers. The Fox equation provides a good estimation of Tg s for most copolymers and for physical blends of poly(methyl methacrylate) (PMMA) and DOPO. When using monomers having three and four carbon atoms in the hydrocarbon spacer, the Tg of copolymers remains close to that of PMMA over a wide range of composition.  相似文献   

2.
The cationic copolymerization of regular soybean oil, low‐saturation soybean oil (LoSatSoy oil), or conjugated LoSatSoy oil with styrene and divinylbenzene initiated by boron trifluoride diethyl etherate (BF3·OEt2) or related modified initiators provides viable polymers ranging from soft rubbers to hard, tough, or brittle plastics. The gelation time of the reaction varies from 1 × 102 to 2 × 105 s at room temperature. The yields of bulk polymers are essentially quantitative. The amount of crosslinked polymer remaining after Soxhlet extraction ranges from 80 to 92%, depending on the stoichiometry and the type of oil used. Proton nuclear magnetic resonance spectroscopy and Soxhlet extraction data indicate that the structure of the resulting bulk polymer is a crosslinked polymer network interpenetrated with some linear or less‐crosslinked triglyceride oil–styrene–divinylbenzene copolymers, a small amount of low molecular weight free oil, and minor amounts of initiator fragments. The bulk polymers possess glass‐transition temperatures ranging from approximately 0 to 105°C, which are comparable to those of commercially available rubbery materials and conventional plastics. Thermogravimetric analysis (TGA) indicates that these copolymers are thermally stable under 200°C, with temperatures at 10% weight loss in air (T10) ranging from 312 to 434°C, and temperatures at 50% weight loss in air (T50) ranging from 445 to 480°C. Of the various polymeric materials, the conjugated LoSatSoy oil polymers have the highest glass‐transition temperatures (Tg) and thermal stabilities (T10). The preceding properties that suggest that these soybean oil polymers may prove useful where petroleum‐based polymeric materials have found widespread utility. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 658–670, 2001  相似文献   

3.
This study investigated the chemical behavior of polymers bearing cycloaliphatic bornyl units along with the steric difference of the chiral (+)‐bornyl methacrylate [(+)‐BMA] and racemic (±)‐BMA, expressed in the physical properties of the copolymers and the resist characteristics. To do this, a series of copolymers containing (+)‐bornyl methacrylate [(+)‐BMA] and (±)‐BMA] units was synthesized. Comonomers of tert‐butyl methacrylate (TBMA), methyl methacrylate (MMA), and maleic anhydride (MA) were used. The thermogravimetric curves, glass‐transition temperature (Tg), and molecular weight (MW) of the copolymers were evaluated. Exposure characteristics of chemical‐amplified positive photoresists comprising various copolymers were investigated. It was found that copolymers bearing (±)‐BMA have higher Tg and better thermostability than those of copolymers containing (+)‐BMA units. The copolymers with (±)‐BMA units, however, revealed an inert photochemical behavior on the positive‐tone photoresist. The patterning properties of the positive photoresist, composed of copolymers bearing (+)‐BMA and (±)‐BMA, and the photoacid generator (PAG) were also investigated. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3538–3544, 2001  相似文献   

4.
With the aim of developing dielectric polymers containing CN groups with strong dipole moment, alternating and statistical copolymers of the cyano monomers vinylidene cyanide (VCN), acrylonitrile and methacrylonitrile with methyl α‐acetoxyacrylate (MAA) were synthesized and characterized. The copolymer's composition and microstructure were analysed by NMR spectroscopy, SEC and elemental analysis. The reactivity ratios calculated from the Qe Alfrey–Price parameters for these copolymers indicated the alternating and statistical structures confirmed by NMR analysis. The copolymers have glass transition temperatures Tg in the range 83–146 °C and are stable up to 230 °C. The thermal stability of the copolymers depends on the nature of the cyano monomers. Their molecular dynamics were investigated by dielectric relaxation spectroscopy. We revealed a weak relaxation β at sub‐Tg temperature for poly(VCN‐co‐MAA) usually originating from molecular motions that are restricted to the scale of a few bond lengths. Strong α‐relaxation processes occurred above Tg for these copolymers. This primary relaxation was associated with cooperative movements of the polar groups (CN) at the time of mobility of the principal chains. The activation energy of the α‐relaxation process was also calculated. The values of the dielectric increment Δε for these copolymers were determined by Cole–Cole plots and indicated that the copolymers exhibit interesting dielectric properties compared with similar cyano materials. The polarity–permittivity relationship was also established. © 2012 Society of Chemical Industry  相似文献   

5.
This study describes the synthesis of amphiphilic ABC‐triblock copolymers comprising a central pseudopoly(4‐hydroxy‐L ‐proline) segment and terminal hydrophilic poly(ethylene glycol)methyl ether as well as hydrophobic poly(ε‐caprolactone) blocks. Differential scanning calorimetry, 1H‐NMR spectroscopy, and gel permeation chromatography are used to characterize the copolymers. The thermal properties (Tg and Tms) of the triblock copolymers depend on the composition of polymers. Larger amounts of ε‐CL incorporated into the macromolecular backbone increased Tg and Tms. Fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering are utilized to investigate their micellar characteristics in the aqueous phase. Observations showed a higher critical micelle concentration with higher hydrophilic components in the copolymers. The micelle exhibited a core‐shell‐corona and/or vesicle shape, and the average size was less than 300 nm. Drug entrapment efficiency and drug loading of micelles depending on the composition of block polymers are also described. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A series of block copolymers composed of poly(ether ether ketone) (PEEK) and poly(ether ether ketone ketone) (PEEKK) components were prepared from their corresponding oligomers via a nucleophlilic aromatic substitution reaction. Various properties of the copolymers were investigated with differential scanning calorimetry (DSC) and a tensile testing machine. The results show that the copolymers exhibited no phase separation and that the relationship between the glass‐transition temperature (Tg) and the compositions of the copolymers approximately followed the formula Tg = Tg1X1 + Tg2X2, where Tg1 and Tg2 are the glass‐transition‐temperature values of PEEK and PEEKK, respectively, and X1 and X2 are the corresponding molar fractions of the PEEK and PEEKK segments in the copolymers, respectively. These copolymers showed good tensile properties. The crystallization kinetics of the copolymers were studied. The Avrami equation was used to describe the isothermal crystallization process. The nonisothermal crystallization was described by modified Avrami analysis by Jeziorny and by a combination of the Avrami and Ozawa equations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1652–1658, 2005  相似文献   

7.
Maleic anhydride modified soybean‐ and castor‐oil‐based monomers, prepared via the malination of the alcoholysis products of the oils with various polyols, such as pentaerythritol, glycerol, and bisphenol A propoxylate, were copolymerized with styrene to give hard rigid plastics. These triglyceride‐based polymers exhibited a wide range of properties depending on their chemical structure. They exhibited flexural moduli in the 0.8–2.5 GPa range, flexural strength in the 32–112 MPa range, glass transition temperatures (Tg) ranging from 72 to 152°C, and surface hardness values in the 77–90 D range. The polymers prepared from castor oil exhibited significantly improved modulus, strength, and Tg values when compared with soybean‐oil‐based polymers. These novel castor and soybean‐oil‐based polymers show comparable properties to those of the high‐performance unsaturated polyester (UP) resins and show promise as an alternative to replace these petroleum‐based materials. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1497–1504, 2006  相似文献   

8.
The biodegradable polylactide (PLA) and polylactide‐co‐glycolides (PLGAs) are being widely investigated for use as scaffolds in bone and ligament reconstruction. The glass transition temperatures (Tg) for these polymers are generally greater than 37°C, causing PLA and PLGA devices to possess brittle characteristics in physiological conditions. To evaluate the possibility of obtaining PLGA polymers with Tg values below 37°C, we evaluated the determinants of Tg in PLA and PLGA copolymers. The Tg, changes in specific heat capacity (ΔCp), and enthalpic relaxation (ΔHg) in two consecutive heating cycles were correlated with lactide/glycolide content and intrinsic viscosity [η] for PLA, PLGAs 90:10, 75:25, 65:35, and 50:50. A linear correlation was observed between Tg and intrinsic viscosity, with 0.1 dL/g increase in viscosity resulting in an increase in Tg by about 3.55°C. The selection of PLA and PLGA copolymers with [η] values <0.19 dL/g, corresponding to a viscosity average molecular weight of <70 kDa, will obtain PLA/PLGA polymers with Tg values below 37°C. The lowest attainable Tg values were found to be 28–30°C. Intrinsic viscosity also correlated with ΔCp differences between aged and rapidly cooled polymers, and is therefore important in predicting free volume changes within these polymers upon aging. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1983–1987, 2006  相似文献   

9.
Binary copolymerization of 4‐methyl‐1,3‐pentadiene (4MPD) with styrene, butadiene and isoprene promoted by the titanium complex dichloro{1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐bis(2‐phenyl‐2‐propyl)phenoxy]}titanium activated by methylaluminoxane is reported. All the copolymers are obtained in a wide range of composition and the molecular weight distributions obtained from gel permeation chromatographic analysis of the copolymers are coherent with the materials being copolymeric in nature. The copolymer microstructure was fully elucidated by means of 1H NMR and 13C NMR spectroscopy. Differential scanning calorimetry shows an increase of glass transition temperature (Tg) with the amount of 4MPD in the copolymers with butadiene and isoprene, while in the copolymers with styrene Tg is increased on increasing the amount of styrene. © 2016 Society of Chemical Industry  相似文献   

10.
This article describes a study on thermal behavior of poly(vinylidene fluoride‐chlorotrifluoroetheylene) [poly(VDF‐CTFE)] copolymers as polymeric binders of specific interest for high energy materials (HEMs) composites by thermal analytical techniques. The non‐isothermal thermogravimetry (TG) for poly (VDF‐CTFE) copolymers was recorded in air and N2 atmospheres. The results of TG thermograms show that poly(VDF‐CTFE) copolymers get degrade at lower temperature when in air than in N2 atmosphere. In the derivative curve, there was single maximum degradation peak (Tmax) indicating one‐stage degradation of poly(VDF‐CTFE) copolymers for all the samples. The other thermal properties such as glass transition temperature (Tg) and degradation temperature (Td) for poly(VDF‐CTFE) copolymers were measured by employing differential scanning calorimeter (DSC) technique. The kinetic parameters related to thermal degradation of poly(VDF‐CTFE) copolymers were investigated through non‐isothermal Kissinger kinetic method using DSC method. The activation energies for thermal degradation of poly(VDF‐CTFE) copolymers were found in a range of 218–278 kJ/mol. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
The morphological structure, glass transition, mechanical properties, and dynamic mechanical properties of star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) synthesized by a multifunctional organic lithium initiator and SiO2‐SSBR composite (N‐SSBR) prepared through adding a small amount of nanosilica modified by silane coupling agent to star‐shaped SSBR synthetic solution and co‐coagulating, and their nanocomposites filled with 20 phr nanosilica were investigated, respectively. The results showed that the silica particles were well dispersed with nanosize in N‐SSBR, which glass‐transition temperature (Tg) was 2°C higher than SSBR. N‐SSBR/SiO2 nanocomposite exhibited lower Payne effect and internal friction loss, higher mechanical properties, and its Tg was 2°C higher than SSBR/SiO2 nanocomposite. N‐SSBR might promote the dispersion of nanosilica powder in matrix and could be applied to green tire tread materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
3,6‐bi(4‐fluorobenzoyl)‐N‐methylcarbazole and 3,6‐bi(4‐fluorobenzoyl)‐N‐ethylcarbazole were synthesized and used to prepare poly(arylene ether ketone)s (PAEKs) with high glass transition temperatures (Tg) and good solubility. High molecular weight amorphous PAEKs were prepared from these two difluoroketones with hydroquinone, phenolphthalein, 9,9‐bis(4‐hydroxyphenyl)fluorene and 4‐(4‐hydroxylphenyl)‐2,3‐phthalazin‐1‐one, respectively. All these polymers presented high thermal stability with glass transition temperatures being in the range 239–303 °C and a 5% thermal weight loss temperature above 460 °C. Compared with the Tg of phenolphthalein‐based PAEK (PEK‐C), fluorene‐based PAEK (BFEK) and phthalazinone‐based PAEK (DPEK) not containing a carbazole unit, these polymers presented a 30–50 °C increase in Tg. Meanwhile, PAEKs prepared from N‐ethylcarbazole difluoroketone showed good solubility in ordinary organic solvents, and all polymers exhibited excellent resistance to hydrochloric acid (36.5 wt%) and sodium hydroxide (50 wt%) solutions. In particular, phthalazinone‐based PAEK bearing N‐ethylcarbazole afforded simultaneously a Tg of 301 °C with good solubility. Tensile tests of films showed that these polymers have desirable mechanical properties. The carbazole‐based difluoroketones play an important role in preparing soluble PAEKs with high Tg by coordinating the relationship between chain rigidity resulting from the carbazole unit and chain distance from the side alkyl. © 2014 Society of Chemical Industry  相似文献   

13.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   

14.
In this work, a series of fluorine‐functionalized polysulfone (F‐PSU) copolymers with intrinsic low dielectric constants (low ε) are reported, which are derived from the polycondensation reaction of 4,4′‐dichlorophenyl sulfone with bisphenol A and bisphenol F (BPF) compounds. The resulting F‐PSU copolymers show high glass transition temperatures (Tg) varying from 187 to 201 °C and are thermally stable up to 500 °C under an N2 atmosphere. The introduction of BPF units into the PSU copolymers imparts enhanced hydrophobic properties to the F‐PSU films with increased water contact angle values from 66.2° to 93.7°. Moreover, the dielectric constant and dielectric loss of the F‐PSU (sample V) film are as low as 2.2 and 0.003 at 1 kHz, respectively. Interestingly, the dielectric properties are relatively stable to near the glass transition temperature, which is because of the existence of BPF structures in the molecular backbone. Furthermore, the F‐PSU copolymers are soluble in common solvents and can be readily fabricated into flexible transparent films by the spin casting method. © 2020 Society of Chemical Industry  相似文献   

15.
Three benzoxazines based on o‐allylphenol and 1,6‐hexamethylenediamine (HDA) or 4,4′‐diaminodiphenyl methane (DDM) or 4,4′‐diaminodiphenyl ether (DDE) were respectively blended with diglycidyl ether of bisphenol‐A (DGEBA) in various weight ratios followed by thermal polymerization to prepare three series of benzoxazine/DGEBA copolymers. With increasing DGEBA content, the peak temperature of the exothermic peaks in the DSC curves shows a systematic increase for the three series of benzoxazine/DGEBA blends. Each copolymer shows a single glass transition temperature (Tg). As the content of DGEBA is increased, Tg reaches a minimum for the copolymer system based on HDA but a maximum for the two systems based on DDM and DDE. For the same benzoxazine/DGEBA weight ratio, copolymers based on DDM and DDE show high Tg values over those based on HDA. The three series of benzoxazine/DGEBA copolymers exhibit a one‐way dual shape memory effect based on Tg, and the shape memory properties of the copolymers under tensile deformation mode vary with the variation of both diamine bridge structure and DGEBA content. © 2018 Society of Chemical Industry  相似文献   

16.
To develop novel biodegradable polymeric prodrugs with target‐directing and drug‐active functional groups, a series of polymeric antitumor prodrugs containing sulfadiazine and 5‐fluorouracil terminal groups were prepared via the two‐step reaction of chlorinated poly(lactic acid) or chlorinated poly(lactic acid‐co‐glycolic acid) with potassium sulfadiazine (SF‐K) and 1,3‐dihydroxymethyl‐5‐fluorouracil. The synthesized polymers were characterized by means of infrared spectroscopy, proton nuclear magnetic resonance spectroscopy, gel permeation chromatography, viscosity measurements, differential scanning calorimetry, and ultraviolet (UV) spectroscopy. The GA/LA value was varied, so that the effects of the comonomer content on the solubility, thermal properties, and degradable behaviors were examined respectively. It was found that introducing the GA units could increase the melting temperature (Tm), the hydrolytic degradation, and the hydrophilicity, while it decreased the glass transition temperature (Tg). The drug content of 5‐FU measured by UV spectra is 56.3 in maximum. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
The synthesis of side chain cholesteric liquid‐crystalline polymers containing both 4‐cholesteryl‐4'‐acryloyloxybenzoate (MI) and 4‐methoxyphenyl‐4'‐acryloyloxybenzoate (MII) mesogenic side groups is described. The chemical structures of the obtained monomers and polymers are confirmed by Fourier transform infrared (FTIR) spectroscopy. The phase behavior and optical properties of the synthesized monomers and polymers were investigated by polarizing optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analyses (TGA). The homopolymer IP reveals a cholesteric phase and VIIP displays a nematic phase. The copolymers IIP–VIP exhibit, respectively, cholesteric oily‐streak texture and focal‐conic texture. The fixation of the helical pitch and oily‐streak texture of the cholesteric phase is achieved by quenching, and polymer films with different reflection colors are obtained. The experimental results demonstrate that the glass transition temperature (Tg) and the melting temperature (Tm) of the copolymers IIP–VIP decrease, whereas the isotropization temperature (Ti) and the mesomorphic temperature range (ΔT) increase with increasing content of mesogenic MII units. TGA results indicate that the temperatures at which 5% mass loss occurred (T5wt%) of all copolymers are >245°C. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1936–1941, 2003  相似文献   

18.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

19.
The copolymerization of ethylene and substituted styrenes [RSt's; p‐methylstyrene (MSt), ptert‐butylstyrene (BSt), 2‐vinylnaphthalene (VN), and p‐(tert‐butyldimethylsilyloxy)styrene (BMSiOSt)] were investigated with dimethylsilylene(tetramethylcyclopentadienyl)(Ntert‐butyl)titanium dichloride to yield the corresponding ethylene–RSt copolymers. The substituent on the styrene (St) monomers did not affect the monomer reactivity ratio. The effect of the substituent structure of RSt on the thermal and mechanical properties was studied with differential scanning calorimetry, dynamic mechanical thermal spectroscopy, and elongation testing. The glass‐transition temperature (Tg) of the copolymers increased with increasing RSt content, and the order of Tg was as follows: BSt > VN > MSt = St. A copolymer with p‐hydroxystyrene (HOSt) was successively synthesized by means of deprotection of the copolymer with BMSiOSt. The copolymer showed a much higher Tg than the other copolymers because of the hydrogen connection of its OH groups. The mechanical properties of the copolymer in the glass state, at a lower temperature than Tg, were almost independent of the nature of the RSt. The substituent of the St monomers affected the pattern of the stress–strain curve in the elongation testing in the amorphous state. An improvement in the shape memory effect was observed in poly(ethylene‐co‐BSt). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Two oxetane‐derived monomers 3‐(2‐cyanoethoxy)methyl‐ and 3‐(methoxy(triethylenoxy)) methyl‐3′‐methyloxetane were prepared from the reaction of 3‐methyl‐3′‐hydroxymethyloxetane with acrylonitrile and triethylene glycol monomethyl ether, respectively. Their homo‐ and copolyethers were synthesized with BF3· Et2O/1,4‐butanediol and trifluoromethane sulfonic acid as initiator through cationic ring‐opening polymerization. The structure of the polymers was characterized by FTIR and1H NMR. The ratio of two repeating units incorporated into the copolymers is well consistent with the feed ratio. Regarding glass transition temperature (Tg), the DSC data imply that the resulting copolymers have a lower Tg than pure poly(ethylene oxide). Moreover, the TGA measurements reveal that they possess in general a high heat decomposition temperature. The ion conductivity of a sample (P‐AN 20) is 1.07 × 10?5 S cm?1 at room temperature and 2.79 × 10?4 S cm?1 at 80 °C, thus presenting the potential to meet the practical requirement of lithium ion batteries for polymer electrolytes. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号