首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a feasibility study of a for lactic acid production integrated with are treatment of wastewater from an industrial starch plant. Rhizopus oryzae two strains, Rhizopus arrhizus and Rhizopus oligosporus were tested with respect to their capability to carry out simultaneous saccharification and fermentation to lactic acid using potato wastewater. Rhizopus arrhizus DAR 36017 was identified as a suitable strain that demonstrated a high capacity for starch saccharification and lactic acid synthesis. The optimal conditions, in terms of pH, temperature and starch concentration, for lactic acid production were determined. The selected fungal strain grew well in a pH range from 3.0 to 7.0. The addition of CaCO310 g dm?3 maintained the pH at 5.0–6.0 and significantly enhanced lactic acid production. Kinetic study revealed that almost complete starch saccharification and a lactic acid yield of 450g kg?1 could be achieved in 20 h and 28 h cultivation, respectively. The maximum lactic acid production 21 g dm?3 and mycelial biomass (1.7 g dm?3) were obtained at 30 °C. Besides the multiple bioproducts, total removal of suspended solids and 90% reduction of COD were achieved in a single no‐aseptic operation. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
Simultaneous saccharification and ethanol fermentation (SSF) of sago starch was studied using amyloglucosidase (AMG) and Zymomonas mobilis. The optimal concentration of AMG and operating temperature for the SSF process were found to be 0.5% (v/w) and 35°C, respectively. Under these conditions with 150 g dm?3 sago starch as a substrate, the final ethanol concentration obtained was 69.2 g dm?3 and ethanol yield, YP/S, 0.50 g g?1 (97% of theoretical yield). Sago starch in the concentration range of 100–200 g dm?3 was efficiently converted into ethanol. When compared to a two-step process involving separate saccharification and fermentation stages, the SSF reduced the total process time by half.  相似文献   

3.
In the one‐step conversion of wood into lactic acid by Simultaneous Saccharification and Fermentation (SSF), inhibition effects caused by hydrolysis‐ and fermentation‐derived compounds on both enzymatic activity and fermentative ability of microorganisms appear when the operation is carried out under conditions leading to high productivities. The main effects inhibiting SSF have been assessed, and the results obtained in fed‐batch experiments allowed the definition of strategies for improving the overall bioconversion process. As cellobiose caused significant inhibition of cellulases, the supplementation of media with β‐glucosidase resulted in improved kinetics and yields. The inhibition of both enzymatic activity and microbial metabolism by lactic acid was confirmed. Intermittent removal of lactic acid by passing the fermentation media through an anion‐exchange resin column resulted in increased productivities and yields. Improved conversion of pretreated wood into lactic acid (67% conversion of cellulose into lactic acid, with maximum lactic acid concentration of 108 g dm?3 and a productivity of 0.94 g dm?3 h?1) was achieved combining multiple substrate addition, supplementation with fresh nutrients and enzymes and removal of lactic acid. © 2001 Society of Chemical Industry  相似文献   

4.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The effects of temperature, pH, and medium composition on lactic acid production by Lactobacillus casei were investigated. The highest lactic acid productivity values were obtained at 37 °C and pH 5.5. The productivity was 1.87 g dm?3 h?1 at 37 °C in shake flasks. In the fermenter, a productivity of 3.97 g dm?3 h?1 was obtained at pH 5.5. The most appropriate yeast extract concentration was 5.0 g dm?3. Whey yielded a higher productivity value than the analytical lactose and glucose. Initial whey lactose concentration did not affect lactic acid productivity. MnSO4 ·H2O was necessary for lactic acid production by L casei from whey. Product yields were approximately 0.93 g lactic acid g lactose?1. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
Sugarcane bagasse was pretreated by wet oxidation (WO) at 195 °C for 15 min under either alkaline, neutral or acidic conditions, and by steam explosion (STEX) at 205 °C for 10 min. Alkaline WO was more favourable than neutral and acidic WO for the following enzymatic hydrolysis of cellulose, giving 792 g kg?1 glucose yield after 48 h. The enzymatic hydrolysis of the fibres in the whole slurry was inhibited by inhibitory compounds contained in the prehydrolysate in comparison with the hydrolysis of the washed solid fibres in buffer. The inhibition increased proportionally with formic acid concentration in the pretreated liquid fraction. Cellulose conversion was higher for simultaneous saccharification and fermentation (SSF) than for separate hydrolysis. The highest SSF conversion (829 g kg?1) was obtained for the material treated by alkaline WO. The fermentability of the prehydrolysates by Saccharomyces cerevisiae was evaluated. Stronger inhibition of ethanolic fermentation was observed in the prehydrolysate obtained by steam explosion. The inhibition was more noticeable for the volumetric productivity than for the ethanol yield. The volumetric productivity was reduced by 94.5 and 91.2% for STEX and WO, respectively, whereas the ethanol yield was reduced only by 45.2 and 31.0%, correspondingly, for STEX and WO. Furan aldehydes seemed to be mainly responsible for the inhibition of the fermentation. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
The biomass growth, lactic acid production and lactose utilisation kinetics of lactic acid production from whey by Lactobacillus casei was studied. Batch fermentation experiments were performed at controlled pH and temperature with six different initial whey lactose concentrations (9‐77 g dm?3) in a 3 dm3 working volume bioreactor. Biomass growth was well described by the logistic equation with a product inhibition term. In addition, biomass and product inhibition effects were defined with corresponding power terms, which enabled adjustment of the model for low‐ and high‐substrate conditions. The Luedeking‐Piret equation defined the product formation kinetics. Substrate consumption was explained by production rate and maintenance requirements. A maximum productivity of 2.5 g dm?3 h?1 was attained with an initial lactose concentration of 35.5 g dm?3. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
β‐fructofuranosidase (EC 3.2.1.26) from Aspergillus sp 27H isolated from soil was investigated for production of fructooligosaccharides (FOS) using whole cells. It possesses hydrolytic and transfructosylating activities that can be altered by modifying the reaction conditions. The optimal conditions for the transfructosylating activity occur in the pH range 5.5–6.0 and at 60 °C, while hydrolytic activity was highest at pH 4.0 and 55 °C. At low sucrose concentration (10 g dm?3) there was rapid conversion of sucrose to glucose and fructose and very low concentrations of FOS were obtained. However, at sucrose concentrations higher than 216 g dm?3 the concentrations of hydrolysis products were reduced. Under the following conditions: pH 5.5, temperature 40 °C, sucrose concentration 615 g dm?3 and enzyme concentration 20β‐fructofuranosidase units g?1 of sucrose, the FOS concentration reached a maximum value of 376 g dm?3 (234 g dm?3 1‐kestose and 142 g dm?3 nystose) and the proportion of FOS in the solids in the reaction mixture was 600–620 g kg?1 at 6 h. These results suggest that β‐fructofuranosidase from Aspergillus sp 27H could be an appropriate enzyme for the commercial production of FOS. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
The production of lactic acid from whey by Lactobacillus casei NRRL B‐441 immobilized in chitosan‐stabilized Ca‐alginate beads was investigated. Higher lactic acid production and lower cell leakage were observed with alginate–chitosan beads compared with Ca‐alginate beads. The highest lactic acid concentration (131.2 g dm?3) was obtained with cells entrapped in 1.3–1.7 mm alginate–chitosan beads prepared from 2% (w/v) Na‐alginate. The gel beads produced lactic acid for five consecutive batch fermentations without marked activity loss and deformation. Response surface methodology was used to investigate the effects of three fermentation parameters (initial sugar, yeast extract and calcium carbonate concentrations) on the concentration of lactic acid. Results of the statistical analysis showed that the fit of the model was good in all cases. Initial sugar, yeast extract and calcium carbonate concentrations had a strong linear effect on lactic acid production. The maximum lactic acid concentration of 136.3 g dm?3 was obtained at the optimum concentrations of process variables (initial sugar 147.35 g dm?3, yeast extract 28.81 g dm?3, CaCO3 97.55 g dm?3). These values were obtained by fitting of the experimental data to the model equation. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in lactic acid production using alginate–chitosan‐immobilized cells. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
Process variables were optimized for the production of lactic acid from pretreated beet molasses by Lactobacillus delbrueckii IFO 3202 for batch and continuous fermentations. In the batch fermentation, maximum yields (95·4% conversion, 77·1% effective) and maximum lactic acid volumetric productivity (4·83 g dm−3 h−1) was achieved at 45°C, pH 6·0, 78·2 g dm−3 sugar concentration with 10 g dm−3 yeast extract. Various cheaper nitrogen sources were replaced with yeast extract on equal nitrogen bases in batch fermentation. Of all the nitrogen sources tested, yeast extract yielded the highest and malt sprouts yielded the second highest level of lactic acid. In the continuous fermentation, maximum lactic acid (4·15%) was obtained at a dilution rate of 0·1 h−1. Maximum volumetric lactic acid productivity (11·20 g dm−3 h−1) occurred at D = 0·5 h−1 dilution rate. © 1997 SCI.  相似文献   

11.
The fermentation kinetics for the conversion of beet molasses, a valuable and economical fermentation substrate, to lactic acid by the homofermentative organism Lactobacillus delbrueckii C.E.C.T. 286 have been studied at controlled pH and temperature under anaerobic batch conditions. An inhibitory effect of lactic acid on fermentation of beet molasses has been found. The bacterium was able to produce lactic acid even after growth ceased. A kinetic model for the fermentation is proposed. From this model, the maximum allowable lactic acid concentration above which growth stops and the lactic acid level above which bacteria stop producing lactic acid were found to be 45 g dm−3 and 57 g dm−3, respectively. © 1997 SCI.  相似文献   

12.
Adsorption coupled with electrostatic interaction as an immobilization technique is an important microbial cell immobilization technique. Treatment of the polymer matrix with the cationic surface treating agent chitosan for lactic acid production has been studied. Cells of Lactobacillus plantarum NCIM 2084 were immobilized on a polypropylene (PP) matrix treated with different concentrations of chitosan. The biocatalyst adsorbed on the 1.0 g dm?3 chitosan‐treated PP matrix proved to be most effective. Repeated batch fermentation experiments showed that the immobilized biocatalyst could be recycled effectively 11 times. Studies were also carried out in a packed bed reactor with media recirculation. A high productivity of 7.66 g dm?3 h?1 could be obtained with a conversion of 94% and a yield of 97% at an average residence time of 30 h. © 2001 Society of Chemical Industry  相似文献   

13.
Biomass production at high temperature by Hansenula polymorpha as part of a lignocellulosic utilizing process was studied. Compromise growth conditions (45°C and pH = 4.8) with an eventual saccharification step were established. The effects of stirring rate and initial glucose concentration on biomass yield coefficient, volumetric productivity and maximal cell density were determined. Process optimization led to a fed-batch fermentation process: high yield (0.63 g dry cell g?1 glucose), volumetric productivity (1.3 g dry cell dm?3 h?1) and cell concentration (60 g dry cell dm?3) were obtained. At these conditions, significant arabitol excretion (18 g dm?3) as a unique by-product associated with cell mass production was obtained, making more interesting a high temperature operating process.  相似文献   

14.
Production of L ‐methionine by immobilized pellets of Aspergillus oryzae in a packed bed reactor was investigated. Based on the determination of relative enzymatic activity in the immobilized pellets, the optimum pH and temperature for the resolution reaction were 8.0 and 60 °C, respectively. The effects of substrate concentration on the resolution reaction were also investigated and the kinetic constants (Km and Vm) of immobilized pellets were found to be 7.99 mmol dm?3 and 1.38 mmol dm?3 h?1, respectively. The maximum substrate concentration for the resolution reaction without inhibition was 0.2 mol dm?3. The L ‐methionine conversion rate reached 94% and 78% when substrate concentrations were 0.2 and 0.4 mol dm?3, respectively, at a flow rate of 7.5 cm3 h?1 using the small‐scale packed bed reactor developed. The half‐life of the L ‐aminoacylase in immobilized pellets was 70 days in continuous operation. All the results obtained in this paper exhibit a practical potential of using immobilized pellets of Aspergillus oryzae in the production of L ‐methionine. © 2002 Society of Chemical Industry  相似文献   

15.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Lactic acid was produced from pretreated beet molasses by the homofermentative organism Lactobacillus delbrueckii subsp delbrueckii IFO 3202 entrapped in calcium alginate gel using batch, repeated batch and continuous fermentation systems. In batch fermentation studies successful results were obtained with 2.0–2.4 mm diameter beads prepared from 2% sodium alginate solution. The highest effective yield (82.0%) and conversion yield (90.0%) were obtained from substrate concentrations of 52.1 and 78.2 g dm−3 respectively. The gel beads produced lactic acid for 14 consecutive batch fermentations without marked activity loss and deformation. In the continuous fermentation, the highest lactic acid (4.22%) was obtained at a dilution rate of 0.1 h−1 while the highest productivity (13.92 g dm−3 h−1) was obtained at a dilution rate of 0.4 h−1. © 1999 Society of Chemical Industry  相似文献   

17.
An expression system based on Escherichia coli and the T5 promoter allowed the overproduction of a his‐tagged rhamnulose‐1‐phosphate aldolase (RhuA; EC 4.1.2.19), an enzyme with applications in the production of deoxyazasugars and deoxysugars compounds. Shake flask and bioreactor cultivation with E coli M15 (pQErham) were performed under different media and inducing conditions for RhuA expression. A Defined Medium (DM) with glucose as carbon source gave a high volumetric and enzyme productivity (3460 AU dm?3 and 288 AU dm?3 h?1 respectively) compared with Luria–Bertoni (LB) medium (2292 AU dm? 3 and 255 AU dm?3 h?1). The minimum quantity of (isopropyl‐β‐D ‐thiogalactoside) IPTG for optimal induction was estimated in 18–20 µmol IPTG gDCW?1. The highest volumetric production of RhuA (8333 AU dm?3) was obtained when IPTG was added in the late log‐phase. No significant differences were found in specific RhuA activity for induction temperatures of 30 and 37 °C. An effective two‐step purification process comprising affinity chromatography and gel permeation has been developed (overall recovery 66.5%). These studies provide the basis for the further development of an integrated process for recombinant RhuA production suitable for biotransformation applications. Copyright © 2003 Society of Chemical Industry  相似文献   

18.
The optimal synthetic conditions of poly(lactic acid‐co‐glycolic acid) (PLGA) via melt copolycondensation directly from L ‐lactic acid (L ‐LA) and glycolic acid (GA) with a feed molar ratio of 50/50 are discussed; the important drug‐delivery carrier PLGA50/50 is used as a special example. With reaction conditions of 165°C and 70 Pa and with 0.5 wt % SnCl2 as the catalyst, 10 h of polymerization gave the L ‐PLGA50/50 with the biggest intrinsic viscosity ([η]), 0.1993 dL/g. The optimal synthetic conditions were verified by the synthesis of D,L ‐PLGA50/50 with D,L ‐lactic acid (D,L ‐LA) instead of L ‐LA, but the biggest [η] was 0.2382 dL/g. Under the same synthetic conditions with L ‐LA and D,L ‐LA as starting materials, serial PLGA with different molar feed ratios, including 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100, were synthesized via simple and practical direct melt copolycondensation, and their solubilities were investigated. When the glycolic acid feed molar percentage was equal to or more than 70%, solubilities in tetrahydrofuran and CHCl3 became worse, and some samples were even wholly insoluble. These biodegradable polymers were also systematically characterized with gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry, and X‐ray diffraction. PLGA synthesized from L ‐LA and D,L ‐LA had many differences in weight‐average molecular weight (Mw), glass‐transition temperature, crystallinity, and composition. When the molar feed ratio of LA to GA was 50/50, both the [η] and Mw values of D,L ‐PLGA were higher than those of L ‐PLGA. With D,L ‐LA as the starting material, the structure of the PLGA copolymer was relatively simple, and its properties were apt to be controlled by its GA chain segment. When the feed molar percentage of the monomer (LA or GA) was more than or equal to 90%, the copolymer was apt to be crystalline, and the aptness was more obvious for the L ‐LA monomer. The composition percentage of GA in PLGA was not only higher than the feed molar percentage of GA, but also, the GA percentage in D,L ‐PLGA was higher than in L ‐PLGA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 244–252, 2006  相似文献   

19.
Batch shake flask experiments were carried out with a fungal strain of Mucor miehei ATCC 3420 to study the effects of five fermentation parameters; initial D ‐glucose concentration, temperature, initial pH, agitation rate and inoculum ratio, on the production of rennin in a chemically defined medium. A statistical design was used to assign the experimental levels of five fermentation parameters for the determination of optimum conditions. The highest concentration of milk‐clotting activity (MCA) obtained was 2286 SU cm?3 (without concentration of the broth) at 29.6 g dm?3 initial D ‐glucose concentration, 6.8 initial pH, 37.6 °C temperature, 81 stroke per min agitation rate and 5.2% (v/v) inoculum ratio. Although enzyme secretion was a function of all the operational parameters investigated, the pH range (4.6–5.2) reached at the time of enzyme production had a profound effect on milk‐clotting activity levels. In the fermentation sample at maximum milk‐clotting activity the R factor, the ratio of milk‐clotting activity to proteolytic activity, was determined as 1 SU PU?1, denoting similar characteristics to a commercial animal rennet. © 2001 Society of Chemical Industry  相似文献   

20.
Enzymatic membrane reactors are widely used to produce protein hydrolysates. During the past few years, leaf extracts have been recognised as a good source of high quality protein. The interest in alfalfa protein concentrate (APC), a hydrophobic protein with excellent functional and nutritional properties, is due to its abundance, to its amino acid composition and to its ribulose 1,5‐biphosphate carboxylase–oxygenase content. In order to use this potential protein source in various fields (food, pharmaceutical and cosmetic industries), a pilot process for APC hydrolysis in a continuous stirred tank membrane reactor (CSTMR) was carried out. At pH 9.5 and 40 °C, the hydrolysis of APC (30.6 g dm?3) by Delvolase (2.4 g dm?3) with a residence time of 180 min, gave a conversion of 759 g kg?1 protein at steady state. Coupling the reactor with an inorganic ultrafiltration membrane (Carbosep M5) with a 10 kDa nominal molecular weight cut‐off (NMWCO), allowed production of a soluble and reproducible peptide permeate with 23 g dm?3 of hydrolysed protein. Phenolic compounds, responsible for the brown colour of the permeate, were removed at pH 5.0 and room temperature by anion‐exchange chromatography using Amberlite IRA900Cl, with a yield of 920 g kg?1. After electrodialysis and spray‐drying of the decolorised permeate, an alfalfa peptide isolate (API) was obtained. It was soluble over the full pH range and its amino acid composition was comparable to that of the FAO/WHO standard. It could be used as a protein supplement in human diets and other fields. Copyright © 2003 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号