首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New power generation technologies are expected to reduce various environmental impacts of providing electricity to urban regions for some investment cost. Determining which power generation technologies are most suitable for meeting the demand of a particular region requires analysis of tradeoffs between costs and environmental impacts. Models simulating different power generation technologies can help quantify these tradeoffs. An Internet‐based modelling infrastructure called DOME (distributed object‐based modelling environment) provides a flexible mechanism to create integrated models from independent simulation models for different power generation technologies. As new technologies appear, corresponding simulation models can readily be added to the integrated model. DOME was used to combine a simulation model for hybrid SOFC (solid oxide fuel cell) and gas turbine system with a power generation capacity and dispatch optimization model. The integrated models were used to evaluate the effectiveness of the system as a centralized power source for meeting the power demand in Japan. Evaluation results indicate that a hybrid system using micro‐tube SOFC may reduce CO2 emissions from power generation in Japan by about 50%. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A methodology to improve the performance of a hybrid solid oxide fuel cell gas turbine (SOFC‐GT) system for the whole operating range is proposed. The method suggests a way to estimate the geometric parameters of the turbomachinery components for a hybrid SOFC‐GT system. It is based on the search of the compressor and turbine operating lines giving the optimum system efficiency both in design and part load operation. Turbomachinery models are used to calculate the geometry that produces the desired performance maps and the corresponding operating lines. Based on the new turbomachinery design, the hybrid system shows a clear efficiency advantage for the whole operating range. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.  相似文献   

4.
We present a steady‐state thermodynamic model of a hybrid solid oxide fuel cell (SOFC)–gas turbine (GT) cycle developed using a commercial process simulation software, AspenPlus?. The hybrid cycle model incorporates a zero‐dimensional macro‐level SOFC model. A parametric study was carried out using the developed model to study the effects of system pressure, SOFC operating temperature, turbine inlet temperature, steam‐to‐carbon ratio, SOFC fuel utilization factor, and GT isentropic efficiency on the specific work output and efficiency of a generic hybrid cycle with and without anode recirculation. The results show that system pressure and SOFC operating temperature increase the cycle efficiency regardless of the presence of anode recirculation. On the other hand, the specific work decreases with operating temperature. Overall, the model can successfully capture the complex performance trends observed in hybrid cycles. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This study compares two SOFC/GT (solid oxide fuel cell with gas turbine) hybrid systems to that of two standalone SOFC systems via eco-technoeconomic analyses that account for long-term degradation effects. Four cases were examined: 1) standalone SOFC plant without a steam bottoming cycle; 2) standalone SOFC plant with a steam bottoming cycle; 3) SOFC/GT hybrid plant without a steam bottoming cycle; and 4) SOFC/GT with a steam bottoming cycle. This study employed a real-time 1D SOFC model with an empirical degradation calculation integrated with steady-state balance-of-plant models. Simulations used Matlab Simulink R2017a, Aspen Plus V10, and Python 3.7.4 with a pseudo steady-state approach. The results showed that, with some trade-offs, the SOFC/GT hybrid plant with the steam bottoming cycle is the best option, with an overall efficiency of 44.6% LHV, an LCOE (levelized cost of electricity) of $US 77/MWh, and a CCA (cost of CO2 avoided) of -$US 49.3/tonneCO2e. The sensitivity analysis also indicated that SOFC/GT hybrid plants were less sensitive to SOFC price compared to standalone SOFC plants. The sensitivity analysis indicated that using a larger gas turbine and replacing the SOFC stack less frequently was the better design choice for the SOFC/GT hybrid plant.  相似文献   

6.
A theoretical solid oxide fuel cell–gas turbine hybrid system has been designed using a Capstone 60 kW micro-gas turbine. Through simulation it is demonstrated that the hybrid system can be controlled to achieve transient capability greater than the Capstone 60 kW recuperated gas turbine alone. The Capstone 60 kW gas turbine transient capability is limited because in order to maintain combustor, turbine and heat exchangers temperatures within operating requirements, the Capstone combustor fuel-to-air ratio must be maintained. Potentially fast fuel flow rate changes, must be limited to the slower, inertia limited, turbo machinery air response. This limits a 60 kW recuperated gas turbine to transient response rates of approximately 1 kW s−1. However, in the SOFC/GT hybrid system, the combustor temperature can be controlled, by manipulating the fuel cell current, to regulate the amount of fuel sent to the combustor. By using such control pairing, the fuel flow rate does not have to be constrained by the air flow in SOFC/GT hybrid systems. This makes it possible to use the rotational inertia of the gas turbine, to buffer the fuel cell power response, during fuel cell fuel flow transients that otherwise limit fuel cell system transient capability. Such synergistic integration improves the transient response capability of the integrated SOFC gas turbine hybrid system. Through simulation it has been demonstrated that SOFC/GT hybrid system can be developed to have excellent transient capability.  相似文献   

7.
A novel solid oxide fuel cell (SOFC)/gas turbine (GT) hybrid cycle system with CO2 capture is proposed based on a typical topping cycle SOFC/GT hybrid system. The H2 gas is separated from the outlet mixture gas of SOFC1 anode by employing the advanced ceramic proton membrane technology, and then, it is injected into SOFC2 to continue a new electrochemical reaction. The outlet gas of SOFC1 cathode and the exhaust gas from SOFC2 burn in the afterburner 1. The combustion gas production of the afterburner1 expands in the turbine 1. The outlet gas of SOFC1 anode employs the oxy‐fuel combustion mode in the afterburner 2 after H2 gas is separated. Then, the combustion gas production expands in the turbine 2. To ensure that the flue gas temperature does not exceed the maximum allowed turbine inlet temperature, steam is injected into the afterburner 2. The outlet gas of the afterburner 2 contains all the CO2 gas of the system. When the steam is removed by condensation, the CO2 gas can be captured. The steam generated by the waste heat boiler is used to drive a refrigerator and make CO2 gas liquefied at a lower temperature. The performance of the novel quasi‐zero CO2 emission SOFC/GT hybrid cycle system is analyzed with a case study. The effects of key parameters, such as CO2 liquefaction temperature, hydrogen separation rate, and the unit oxygen production energy consumption on the new system performance, are investigated. Compared with the other quasi‐zero CO2 emission power systems, the new system has the highest efficiency of around 64.13%. The research achievements will provide the valuable reference for further study of quasi‐zero CO2 emission power system with high efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency, in order to improve system efficiencies and economics. The SOFC system is indirectly coupled to the gas turbine power plant, paying careful attention to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 20.6 MW at 49.9% efficiency. The model also predicts a break-even per-unit energy cost of USD 4.65 ¢ kWh−1 for the hybrid system based on futuristic mass generation SOFC costs. This shows that SOFCs may be indirectly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

9.
In a global energetic context characterized by the increasing demand of oil and gas, the depletion of fossil resources and the global warming, more efficient energy systems and, consequently, innovative energy conversion processes are urgently required. A possible solution can be found in the fuel cells technology coupled with classical thermodynamic cycle technologies in order to make hybrid systems able to achieve high energy/power efficiency with low environmental impact. Moreover, due to the synergistic effect of using a high temperature fuel cell such as solid oxide fuel cell (SOFC) and a recuperative gas turbine (GT), the integrated system efficiency can be significantly improved. In this paper a steady zero dimensional model of a SOFC/GT hybrid system is presented. The core of the work consists of a performance analysis focused on the influence of the GT part load functioning on the overall system efficiency maintaining the SOFC power set to the nominal one. Also the proper design and management of the heat recovery section is object of the present study, with target a global electric efficiency almost constant in part load functioning respect to nominal operation. The results of this study have been used as basis to the development of a dynamic model, presented in the following part of the study focused on the plant dynamic analysis.  相似文献   

10.
In this article, a dynamic, lumped model of a solid oxide fuel cell (SOFC) is described, as a step towards developing control relevant models for a SOFC combined with a gas turbine (GT) in an autonomous power system. The model is evaluated against a distributed dynamic tubular SOFC model. The simulation results confirm that the simple model is able to capture the important dynamics of the SOFC and hence it is concluded that the simple model can be used for control and operability studies of the hybrid system. Several such lumped models can be aggregated to approximate the distributed nature of important variables of the SOFC. Further, models of all other components of a SOFC-GT-based autonomous power system are developed and a control structure for the total system is developed. The controller provides satisfactory performance for load changes at the cost of efficiency.  相似文献   

11.
Design of a hybrid system composed of a solid oxide fuel cell (SOFC), molten carbonate fuel cell (MCFC), gas turbine (GT), and an advanced adiabatic compressed air energy storage (AA-CAES) based on only energy analysis could not completely identify optimal operating conditions. In this study, the energy and exergy analyses of the hybrid fuel cell system are performed to determine suitable working conditions for stable system operation with load flexibility. Pressure ratios of the compressors and energy charging ratios are varied to investigate their effects on the performance of the hybrid system. The hybrid fuel cell system is found to produce electricity up to 60% of the variation in demand. A GT pressure ratio of 2 provides agreeable conditions for efficient operation of the hybrid system. An AA-CAES pressure ratio of 15 and charging ratio of 0.9 assist in lengthening the discharging time during a high load demand based on an electricity variation of 50%.  相似文献   

12.
Power generation using gas turbine (GT) power plants operating on the Brayton cycle suffers from low efficiencies, resulting in poor fuel to power conversion. A solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% efficiency in order to improve system efficiencies and economics. The SOFC system is semi-directly coupled to the gas turbine power plant, with careful attention paid to minimize the disruption to the GT operation. A thermo-economic model is developed for the hybrid power plant, and predicts an optimized power output of 21.6 MW at 49.2% efficiency. The model also predicts a breakeven per-unit energy cost of USD 4.70 ¢/kWh for the hybrid system based on futuristic mass generation SOFC costs. Results show that SOFCs can be semi-directly integrated into existing GT power systems to improve their thermodynamic and economic performance.  相似文献   

13.
Solid oxide fuel cell (SOFC) is a promising technology for electricity generation. Sulfur-free syngas from a gas-cleaning unit serves as fuel for SOFC in integrated gasification fuel cell (IGFC) power plants. It converts the chemical energy of fuel gas directly into electric energy, thus high efficiencies can be achieved. The outputs from SOFC can be utilized by heat recovery steam generator (HRSG), which drives the steam turbine for electricity production. The SOFC stack model was developed using the process flow sheet simulator Aspen Plus, which is of the equilibrium type. Various ranges of syngas properties gathered from different literature were used for the simulation. The results indicate a trade-off efficiency and power with respect to a variety of SOFC inputs. The HRSG located after SOFC was included in the current simulation study with various operating parameters. This paper describes IGFC power plants, particularly the optimization of HRSG to improve the efficiency of the heat recovery from the SOFC exhaust gas and to maximize the power production in the steam cycle in the IGFC system. HRSG output from different pressure levels varies depending on the SOFC output. The steam turbine efficiency was calculated for measuring the total power plant output. The aim of this paper is to provide a simulation model for the optimal selection of the operative parameters of HRSG and SOFC for the IGFC system by comparing it with other models. The simulation model should be flexible enough for use in future development and capable of predicting system performance under various operating conditions.  相似文献   

14.
In this study, we first consider developing a thermodynamic model of solid oxide fuel cell/gas turbine combined heat and power (SOFC/GT CHP) system under steady-state operation using zero-dimensional approach. Additionally, energetic performance results of the developed model are compared with the literature concerning SOFC/GT hybrid systems for its reliability. Moreover, exergy analysis is carried out based on the developed model to obtain a more efficient system by the determination of irreversibilities. For exergetic performance evaluation, exergy efficiency, exergy output and exergy loss rate of the system are considered as classical criteria. Alternatively, exergetic performance coefficient (EPC) as a new criterion is investigated with regard to main design parameters such as fuel utilization, current density, recuperator effectiveness, compressor pressure ratio and pinch point temperature, aiming at achieving higher exergy output with lower exergy loss in the system. The simulation results of the SOFC/GT CHP system investigated, working at maximum EPC conditions, show that a design based on EPC criterion has considerable advantage in terms of entropy-generation rate.  相似文献   

15.
An energy analysis of three typical solid oxide fuel cell (SOFC) power systems fed by methane is carried out with detailed thermodynamic model. Simple SOFC system, hybrid SOFC‐gas turbine (GT) power system, and SOFC‐GT‐steam turbine (ST) power system are compared. The influences of air ratio and operative pressure on the performance of SOFC power systems are investigated. The net system electric efficiency and cogeneration efficiency of these power systems are given by the calculation model. The results show that internal reforming SOFC power system can achieve an electrical efficiency of more than 49% and a system cogeneration efficiency including waste heat recovery of 77%. For SOFC‐GT system, the electrical efficiency and cogeneration efficiency are 61% and 80%, respectively. Although SOFC‐GT‐ST system is more complicated and has high investment costs, the electrical efficiency of it is close to that of SOFC‐GT system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
《能源学会志》2014,87(1):18-27
In this paper, the model of hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) cycle is applied to investigate the effects of the inlet fuel type and composition on the performance of the hybrid SOFC–GT cycle. The sensitivity analyses of the impacts of the concentration of the different components, namely, methane, hydrogen, carbon dioxide, carbon monoxide, and nitrogen, in the inlet fuel on the performance of the hybrid SOFC–GT cycle are performed. The simulation results are presented with respect to a reference case, when the system is fueled by pure methane. Then, the performance of the hybrid SOFC–GT system when methane is partially replaced by each component within a corresponding range of concentration with an increment of 5% at each step is investigated. The results point out that the output powers of the SOFC, GT, and cycle as a whole decrease sharply when methane is replaced with other species in majority of the cases.  相似文献   

17.
Solid oxide fuel cell (SOFC) is characterized in high performance and high temperature exhaust, and it has potential to reach 70% efficiency if combined with gas turbine engine (GT). Because the SOFC is in developing stage, it is too expensive to obtain. This paper proposes a feasibility study by using a burner (Comb A) to simulate the high temperature exhaust gas of SOFC. The second burner (Comb B) is connected downstream of Comb A, and preheated hydrogen is injected to simulate the condition of sequential burner (SeqB). A turbocharger and a water injection system are also integrated in order to simulate the situation of a real SOFC/GT hybrid system. The water injection system is used to simulate the water mist addition at external reformer.  相似文献   

18.
To meet the UK's decarbonization targets the introduction of novel integrated renewable energy generation, storage and demand management systems is required. In this paper the current role of fuel cells in the British domestic sector is discussed using simulation results of a solid oxide fuel cell (SOFC) system in a typical British single dwelling. 17% of carbon dioxide emissions are saved and 69% of the electricity generated by the SOFC system is exported to the grid for this single dwelling according to simulation results. Additionally, the same SOFC system is integrated with photovoltaic technology in a 7 home zero carbon community. The community approach adds a significant benefit given it increases the amount of electricity generated by the SOFC system which is used onsite by 128%, being the price of imported electricity 3 times higher than the export tariff. Then, a combination of short-term and long-term energy storage strategies is suggested by means of a lithium-ion battery and polymer electrolyte membrane (PEM) electrolyser which increased the self-consumption by 118%. According to simulation results, a 6 kW PEM electrolyser with an annual efficiency of 66% only generates 19% of the hydrogen which is consumed by the SOFC system which was used to meet the peak demand using PV generation.  相似文献   

19.
This study presents the final results of a series of modelling steps which are undertaken for the performance assessment of the building cogeneration and polygeneration systems using solid oxide fuel cell (SOFC). Based on earlier work, generic SOFC cell stack and system models were developed and employed to analyze different SOFC systems configurations for optimal efficiencies, this SOFC system model is used to derive performance input data for transient whole-building and energy system simulation tools which contain simpler SOFC system models. These steps are shortly summarized here. Then the final step, the evaluation of building integrated co- and polygeneration SOFC systems in terms of primary energy demand and CO2 emissions, employing such tools, is presented here for a polygeneration system with typical heating and cooling loads, and electricity demand profiles, for different SOFC systems, including a comparison to current standard technologies.  相似文献   

20.
This study examines the performance of a high-temperature solid oxide fuel cell combined with a conventional recuperative gas turbine (GT–SOFC) plant, as well as the irreversibility within the system. Individual models are developed for each component, through applications of the first and second laws of thermodynamics. The overall system performance is then analyzed by employing individual models and further applying thermodynamic laws for the entire cycle, to evaluate the thermal efficiency and entropy production of the plant. The results of an assessment of the cycle for certain operating conditions are compared against those available in the literature. The comparisons provide useful verification of the thermodynamic simulations in the present work. The comparisons provide useful verification of the thermal simulations in the present work. Further outcomes indicate that increasing the turbine inlet temperature results in decreasing the thermal efficiency of the cycle, whereas it improves the net specific power output. Moreover, an increase in either the turbine inlet temperature or compression ratio leads to a higher rate of entropy generation within the plant. It was found that the combustor and SOFC contribute predominantly to the total irreversibility of the system. About 60% of the irreversibility takes place in the following components at typical operating conditions: 31.4% in the combustor and 27.9% in the SOFC. A comparison between the GT–SOFC plant and a traditional GT cycle, based on identical operating conditions, is also made. Although the irreversibility of a modern plant is higher than that of a conventional cycle, the superior performance of a GT–SOFC, in terms of thermal efficiency and environmental impact (lower CO2 emissions), over a traditional GT cycle is evident. It has about 27.8% higher efficiency than a traditional GT plant. In this case, the thermal efficiency of the integrated cycle becomes as high as 60.6% at the optimum compression ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号