首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the experimental results of effect of guide vane shape on performance of an impulse turbine for wave energy conversion. Two types of guide vanes are considered in the present study: two-dimensional (2D) guide vanes and three-dimensional (3D) guide vanes. The previous investigations by the authors revealed that the 2D guide vanes cause large recirculation zones at leading edge of downstream guide vanes, which affect the performance of turbine considerably. In order to improve the performance of turbine, three-dimensional guide vanes are designed based on free-vortex theory. Detailed aerodynamic and performance tests have been conducted on impulse turbine with the two types of guide vanes. The experiments have been conducted under various inlet conditions such as steady, sinusoidal and random (real Sea) flows. From the results, it was proved that the efficiency of impulse turbine has been improved for 4.5% points due to 3D guide vanes. The hysteric characteristic has been noticed from the experimental results of impulse turbine with sinusoidal and random flow inlet conditions. Furthermore, it was investigated that the performance of turbine is considerably more during deceleration of inlet flow than the acceleration in a half cycle of sinusoidal wave.  相似文献   

2.
In this study, in order to achieve further improvement of the performance of an impulse turbine with fixed guide vanes for wave energy conversion, the effect of guide vane shape on the performance was investigated by experiment. The investigation was performed by model testing under steady flow condition. As a result, it was found that the efficiency of the turbine with 3D guide vanes are slightly superior to that of the turbine with 2D guide vanes because of the increase of torque by means of 3D guide vane, though pressure drop across the turbine for the 3D case is slightly higher than that for the 2D case.  相似文献   

3.
This paper deals with the detailed flow analysis of impulse turbine with experimental and computed results for wave energy power conversion. Initially, several turbulence models have been used in two-dimensional (2-D) computational fluid dynamic (CFD) analysis to find a suitable model for this kind of slow speed unconventional turbine. Experiments have been conducted to validate the CFD results and also to analyze the aerodynamics at various stations of the turbine. The three-dimensional (3-D) CFD model with tip clearance has been generated to predict the internal flow and to understand the effect of tip clearance leakage flow on behavior of the turbine in design and off-design conditions. As a result, it is found from the 2-D results that the comparison between computed and experimental data is good, qualitatively and the turbulence model, standard kε can predict the experimental values reasonably well, especially the efficiency of the turbine. Experimental results reveal that the downstream guide vanes are more responsible for low efficiency of the turbine and it is measured that 21% average pressure is lost due to downstream guide vanes. It is proved from the 3-D CFD model with tip clearance that it can predict the experimental values quantitatively and qualitatively. Furthermore, it is estimated from the computed results that the efficiency of the turbine has been reduced about 4%, due to tip clearance leakage flow at higher flow coefficients.  相似文献   

4.
A Wells turbine has inherent disadvantages: lower efficiency and poorer starting characteristics. Providing guide vanes on either side of the rotor could be one of the most effective ways of improving its performance. Several papers have demonstrated the usefulness of 2D guide vanes so far. In order to achieve further improvement in the performance of the Wells turbine, the effect of 3D guide vanes has been investigated experimentally by testing a model under steady flow conditions. Then, the running and starting characteristics under irregular flow conditions have been obtained by a computer simulation using quasi-steady analysis. It is found that the running and starting characteristics of the Wells turbine with 3D guide vanes are superior to those with 2D guide vanes.  相似文献   

5.
The objective of this paper is to present the performance comparison of 2D Computational Fluid Dynamics (CFD) analysis with experimental analysis of 0.6 m impulse turbine with fixed guide vanes for both 0.6 and 0.7 hub to tip ratio (H/T). Also the comparison of 2D CFD analysis of the said turbine with different values of H/T ranging from 0.5 to 0.7. A 2D-cascade model was used for CFD analysis while uni-directional steady flow was used for experimental analysis. The blade and guide vane geometries are based on 0.6 m rotor diameter, with optimum profile, and different H/T of 0.5, 0.6 and 0.7. It was concluded from 2D CFD analysis that 0.5 H/T ratio performances was higher than that of 0.6 and 0.7 H/T at peak efficiency and the operational flow range for 0.5 H/T was found to be wider than that of 0.6 and 0.7 H/T ratio.  相似文献   

6.
This paper presents the comparison of a three dimensional Computational Fluid Dynamics (CFD) analysis with empirical performance data of a 0.6 m impulse turbine with fixed guide vanes used for wave energy power conversion. Pro-Engineer, Gambit and Fluent 6 were used to create a 3-D model of the turbine. A hybrid meshing scheme was used with hexahedral cells in the near blade region and tetrahedral and pyramid cells in the rest of the domain. The turbine has a hub-to-tip ratio of 0.6 and results were obtained over a wide range of flow coefficients. The model yielded a maximum efficiency of approximately 54% as compared to a maximum efficiency of around 49% from experiment. A degree of insight into flow behaviour, not possible with experiment, was obtained.  相似文献   

7.
Oscillating water column(OWC)based wave energy plants have been designed with several types of bidirec-tional turbines for converting pneumatic power to shaft power.Impulse turbines with linked guide vanes andfixed guide vanes have been tested at the Indian Wave Energy plant.This was after initial experimentation withWell's turbines.In contrast to the Well's turbine which has a linear damping characteristic,impulse turbines havenon-linear damping.This has an important effect in the overall energy conversion from wave to wire.Optimizingthe wave energy plant requires a turbine with linear damping and good efficiency over a broad range of flow co-efficient.This work describes how such a design can be made using fixed guide vane impulse turbines.The In-dian Wave Energy plant is used as a case study.  相似文献   

8.
This paper presents the work carried out to predict the behavior of a 0.6 m impulse turbine with fixed guide vanes with 0.6 hub to tip (H/T) ratio under real sea conditions.This enhances the earlier work done by authors on the subject by including the effects of damping applied by the turbine. Real wave data for different wave sites were used as the input data. A typical oscillating water column (OWC) geometry has been used for this simulation. Standard numerical techniques were employed to solve the non-linear behavior of the sea waves. Considering the quasi-steady assumption, uni-directional steady flow experimental data were used to simulate the turbine characteristics under irregular unsteady flow conditions. The test rotor used for this simulation consisted of 30 blades with elliptical profile with a set of symmetric, fixed guide vanes on both up-stream and down-stream sections of the rotor, with 26 vanes each. The results show that the performance of this type of turbine depends on the level of damping applied by the turbine and the prevailing wave site conditions. The objective of this paper is to predict the effects of applied damping on the behavior of impulse turbine under irregular, unsteady conditions for wave power conversion using numerical simulation.  相似文献   

9.
Wave energy is the most abundant source of renewable energy in the World. For the last two decades, engineers have been investigating and defining different methods for power extraction from wave motion. Two different turbines, namely Wells turbine and impulse turbine with guide vanes, are most commonly used around the world for wave energy power generation. The ultimate goal is to optimize the performance of the turbine under actual sea conditions. The total research effort has several strands; there is the manufacture and experimental testing of new turbines using the Wave Energy Research Team's (WERT) 0.6 m turbine test rig, the theoretical and computational analysis of the present impulse turbine using a commercial software package and finally the prediction of the performance of the turbine in a representative wave power device under real sea conditions using numerical simulation. Also, the WERT 0.6 m turbine test rig was upgraded with a data acquisition and control system to test the turbine in the laboratory under real sea conditions using the computer control system. As a result, it is proven experimentally and numerically that the turbine efficiency has been raised by 7% by reducing the hub‐to‐tip ratio from 0.7 to 0.6. Effect of tip clearance on performance of the turbine has been studied numerically and designed tip clearance ratio of 1% has been validated. From the numerical simulation studies, it is computed that the mean conversion efficiency is reduced around 5% and 4.58% due to compressible flow and damping effects inside OWC device. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
IlltnductionSeveral of the wave energy devices cuntiy stUdiedin the United kingdom, Japan, POhogal, India and othercountries make use of the principle of the oscillatingwater-air coltUnn for convening wave energy to lowPneqmatic energy Which in tUrn can be converted intomechAncal energy. In this case, the developmellt of a bidirechonal air theme has come lip as an importantProblem. So far, a number of self-rechfying air onnesWith different configurations have been ProPOsed, and a; Wells…  相似文献   

11.
Oscillating water column based wave energy extracting system has a low efficiency due to the poor performance of its principal power extracting component, the bidirectional turbine. In the present work, flow over a bidirectional impulse turbine was simulated using CFD technique and optimized using multiple surrogates approach. The surrogates being problem dependent may produce unreliable results, if a wrong surrogate is selected. Hence, multiple surrogates such as response surface approximation, radial basis function, Kriging and weighted average surrogates were incorporated in this problem. Same design points were used to generate multiple optima via multiple surrogates to enhance the robustness of the optimization process. Numbers of guide vanes and rotor blades were chosen as the design variables, and the objective was to maximize the blade efficiency. Reynolds-averaged Navier–Stokes equations were solved for analyzing the flow physics. The computed results were used to train the surrogates and find the optimal points via hybrid genetic algorithm. The surrogates were further applied to find the optimal flow parameters by changing flow velocity and turbine speed. The relative efficiency enhancement through our present approach was about 16%. Detailed methodologies, analysis of the results and surrogate applicability have been presented in this paper.  相似文献   

12.
The paper presents results from model testing of a self-rectifying radial-flow air turbine, that is being developed as an alternative to the axial-flow self-rectifying turbines for applications in wave energy conversion. In the new machine, named biradial turbine, the flow into, and out of, the rotor is radial. The rotor is surrounded by a pair of radial-flow guide-vane rows. The downstream guide vanes are prevented from obstructing the flow coming out of the rotor by axially displacing the whole guide vane set. The turbine model, with a 0.488 m diameter rotor, was tested in unidirectional flow. Experimental results are shown, in dimensionless form, for efficiency, power and pressure head versus flow rate. They are compared with predictions from CFD computations. The results from model testing were used to estimate the time-averaged efficiency of the turbine subject to the irregular bidirectional air flow induced by random waves.  相似文献   

13.
Pressure fluctuation due to rotor–stator interaction and occurrence of vortex rope in draft tube at partial load operation are obvious phenomena in Francis type reaction hydro turbines. These hydrodynamic effects are important issues and should be addressed during the design of hydraulic machines. A 3-dimensional transient state turbulent flow simulation in the entire flow passage of a 70 kW-Francis turbine having specific speed of 203.1 is conducted to investigate the rotor–stator interaction by adopting based SST turbulence model. The commercial 3D Navier–Stokes CFD solver Ansys-CFX is utilized to study the flow through this vertical shaft Francis turbine in its stationary and transient passages, at 100% optimum load and 72% of part load. The investigated turbine consists of a spiral casing with 16 guide vanes, 8 stay vanes, a runner with 13 blades and a draft tube. With a time step of 2° of a rotational period of the runner for 10 full rotations, the time dependent pressure and torque variations are monitored at the selected locations during the unsteady state calculation. A periodical behavior is observed for the pressure distribution in guide vanes, runner blades and torque in the runner blades. The pressure distribution curve in runner blades reveals the two dominating frequencies – the lower peaks due to runner speed and the upper peaks corresponding to the number of guide vanes interacting with the flow. The flow acceleration toward inside of the runner is depicted by the expanding wakes behind the stay vanes. Vortex rope is observed in draft tube, downstream the runner, at part-load operation.  相似文献   

14.
This paper depicts numerical analysis on Impulse turbine with fixed guide vanes for wave energy conversion. From the previous investigations, it is found that one of the reasons for the mismatch between computed and experimental data is due to neglecting tip clearance ef fect. Hence, a 3-D model with tip clearance has been generated to predict the internal flow and performance of the turbine. As a result, it is found that the comparison between computed and experimental data is good, quantitatively and qualitatively. Computation has been carried out for various tip clearances to understand the physics of tip leakage flow and effect of tip clearance on performance of such unconventional turbine. It is predicted that the turbine with 0.25% tip clearance performs almost similar to the case of without tip clearance for the entire flow coefficients. The designed value of 1% tip clearance has been validated numerically and computed that the efficiency of the turbine has been reduced around 4%, due to tip clearance flow at higher flow coefficients.  相似文献   

15.
Guide vanes are installed in the Wells turbine in order to improve its efficiency, self-rotating characteristics and off design performance with stall. This work attempts to explain the role of these guide vanes on the basis of momentum theory. It is shown that the upstream vanes are more effective in enhancing efficiency than the downstream ones. A design method for guide vanes is suggested based on experimental data and potential theory. Experimental studies carried out by the author confirm the theory proposed.  相似文献   

16.
INTRODUCTIONWiththeconventionalenergyresourceslikelytogetexhaustedinafewdecades,theinexhaustiblesourcesofenergyhavetotaketheirplace.Alternateenergyfromtheoceanisattractingtheattelltionoftheresearchersinrecentyearsduetoitsperennialavailabilityandminimumhealthhazards.Ofthemanypossibleformsofoceanenergy,waveenergyispromising.Waveenergyisanalternateformenergy,whichispollutantfreeandinnearfutureitislikelytobeeconomicallyviable.Countrieswhicharesurroundedbyseaandpossessremotelysituatedislandcom…  相似文献   

17.
A Wells turbine is a self-rectifying air flow turbine capable of converting pneumatic power of the periodically reversing air stream in Oscillating Water Column into mechanical energy. The Wells turbine has inherent disadvantages; lower efficiency, poorer starting characteristics, higher axial force and low tangential force in comparison with conventional turbines. Guide vanes before and after the rotor suggest a means to improve the tangential force, hence its efficiency. Experimental investigations are carried out on a Wells turbine with the constant chord and variable chord blade rotors fitted with inlet and outlet guide vanes to understand the aerodynamics. Experiments were also conducted for the above said rotors with various stagger angles to validate the design stagger angle. In addition, the starting and running characteristics of the rotors have been studied and compared with the case without guide vanes. Studies were done at various flow coefficients covering the entire range of flow coefficients over which the turbine is operable. The efficiency, starting characteristics of the turbines with guide vanes have improved when compared with the respective turbines without guide vanes.  相似文献   

18.
A simple fixed geometry impulse turbine has been studied as a suitable power converter in Oscillating Water Column based wave power plants. Comparison with the Wells turbine, which is the commonly used self-rectifying turbine in such applications, shows it to be superior in performance under irregular flow conditions. Optimum guide vane angle for maximum efficiency has been arrived at based on the five angles tested.  相似文献   

19.
设置导流罩能提高潮流能水轮机效率,缩小转轮尺寸,降低机组造价。为了揭示导流罩聚能增效机理,采用VOF两相流模型对竖轴直叶潮流能水轮机进行三维模拟分析。即先根据模拟对象计算无导流罩情况下水轮机效率与尖速比的关系曲线,并对比加装导流罩前后的流态变化;然后分析导流罩各体型参数对水轮机获能效率的影响,通过正交分析得到使水轮机效率最高的体型。研究表明,导流罩通过提高转轮下游盘面流速来提高水轮机获能效率,其中导流罩喉部宽度对水轮机效率影响最大。  相似文献   

20.
Conventionally assessing of turbine performance was done by conducting model experiments which at times become costly and time consuming for several design alternatives in design optimization. Recently, computational fluid dynamics (CFD) has become a more cost effective tool for predicting detailed flow information in turbine space to enable the selection of the best design. With the growth of computational mechanics, the virtual hydraulic machines are becoming more and more realistic to get minor details of the flow, which are not possible in model testing. The inverse design technique and fully 3-dimensional flow simulations were performed early to manufacture the newly developed runner. It allows a quick and efficient improvement and optimization of turbine components. The system has been applied to the optimization of a Francis turbine runner for a turbine replacement project. In present work, 3D turbulent real flow analyses in hydraulic Francis turbine have been carried out at four guide vane opening at constant rotational speed using Ansys CFX computational fluid dynamics (CFD) software. The newly developed runner from reverse engineering and CFD results show an enhanced performance. The average values of flow parameters like velocities and flow angles at the inlet and outlet of runner, guide vane and stay vane of turbine are computed to derive flow characteristics. The aim was to analyze the flow behavior and pressure distribution to further fine-tune the whole numerical experiment to achieve the level of accuracy necessary for the concept design of a revitalized turbine. The obtained results are in good agreement with the in site experiments, especially for the characteristic curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号