首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric heaters are used extensively in many industrial applications. There are several interacting parameters that affect heater performance and contribute to its cost. Such parameters are: coil length, coil diameter, helix diameter, coil pitch, number of turns, coil emissivity, heater wall emissivity, applied voltage, air flow rate, air temperature at the heater outlet, insulation thickness, and the heater dimensions. Three conical heater configurations were selected for preliminary optimization. A conical heater configuration with outer ring coils was found to give the highest heater efficiency, the easiest and least expensive to manufacture, and was selected for detailed modelling. In the simulation model, the heater wall was divided into four annular sections and the continuous heater coil was divided into four segments of four ring coils. Energy and heat transfer equations were written for each ring coil, each section of the wall, and the air past each ring coil. Equations for coil resistance and power, air properties, heater geometry, and configuration factors are added to form a system of 220 nonlinear equations. Engineering equation solver (EES) was used to solve the system of equations. The results were checked by comparing the heater efficiency based on the average inlet and outlet air temperatures, and the heater efficiency based on the heater losses. Both efficiencies matched well in all calculations. The effects of varying the identified heater parameters on the heater performance were studied and discussed. The results indicate that increasing the coil length and airflow rate, while reducing coil emissivity, wall emissivity, and wire diameter could improve heater performance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, interval number optimization and model predictive control are proposed to handle the uncertain-but-bounded parameters in electric water heater load scheduling. First of all, interval numbers are used to describe uncertain parameters including hot water demand, ambient temperature, and real-time price of electricity. Moreover, the traditional thermal dynamic model of electric water heater is transformed into an interval number model, based on which, the day-ahead load scheduling problem with uncertain parameters is formulated, and solved by interval number optimization. Different tolerance degrees for constraint violation and temperature preferences are also discussed for giving consumers more choices. Furthermore, the model predictive control which incorporates both forecasts and newly updated information is utilized to make and execute electric water heater load schedules on a rolling basis throughout the day. Simulation results demonstrate that interval number optimization either in day-ahead optimization or model predictive control format is robust to the uncertain hot water demand, ambient temperature, and real-time price of electricity, enabling customers to flexibly adjust electric water heater control strategy.  相似文献   

3.
A matrix solar collector fabricated from broken glass pieces is being supposed to be a thermally efficient and economically cheap system for heating air. In this communication, we develop an analysis to study the performance of such a system. Typical cases considered are (i) top surface blackened, (ii) all glass pieces blackened and (iii) bottom surface blackened. Numerical calculations have been performed to study the effect of single and double glazing and insulation at the bottom, besides the effect of other physical parameters.  相似文献   

4.
In this study, a direct expansion solar-assisted heat pump water heater (DX-SAHPWH) with rated input power 750 W was tested and analyzed. Through experimental research in spring and thermodynamics analysis about the system performance, some suggestions for the system optimization are proposed. Then, a small-type DX-SAHPWH with rated input power 400 W was built, tested and analyzed. Through exergy analysis for each component of DX-SAHPWH (A) and (B), it can be seen that the highest exergy loss occurs in the compressor and collector/evaporator, followed by the condenser and expansion valve, respectively. Furthermore, some methods are suggested to improve the performance of each component, especially the collector/evaporator. A methodology for the design optimization of the collector/evaporator was introduced and applied. In order to maintain a proper matching between the heat pumping capacity of the compressor and the evaporative capacity of the collector/evaporator under widely varying ambient conditions, the electronic expansion valve and variable frequency compressor are suggested to be utilized for the DX-SAHPWH.  相似文献   

5.
This investigation reports a new type of solar water heating system without water pipes on the collector surface or a separate storage tank. The water to be heated continuously flows perpendicularly from an upper transparent cover to a porous absorber and is stored in a small volume beneath this assembly. Three different systems were designed, manufactured and tested but only one proved to be successful; this design indicated higher thermal efficiency compared to conventional collectors at high flow rates whereas at low flow rates the opposite is true.  相似文献   

6.
An unsteady analysis of a cylindrical solar water heater has been performed. The physical parameters which govern the physical system are identified. The governing equations have been solved using the fourth order Runge-Kutta method for different values of the parameters. A good agreement between the numerical and experimental results has been obtained.  相似文献   

7.
A cylindrical collector-cum-storage type solar water heater has been designed, developed and tested. Its year round performance has been carried out and reported in this paper. The heater can provide 50 litres of hot water at 50–60°C in the afternoon and a temperature of 35°C can be retained till the next day for early morning use. The heater receives approximately 30% more radiation as compared to a flat surface. The economics of the heater has been worked out and it has been found that the cost can be recovered within one year.  相似文献   

8.
The performance of a thermosyphon solar water heater was studied analytically and experimentally. A finite-difference model was used to predict year-round performance. Tests were conducted on an experimental heater subjected to acutal weather conditions in Benghazi, Libya. Satisfactory qualitative and quantitative agreement was found between experimental and predicted results. A storage volume of 60 liters per unit collector area was found to be optimum for Benghazi conditions. The day-end temperature was found to vary between 23° and 51°C for the test period, which occurred in winter, with an average of 41°C.  相似文献   

9.
In this communication, a heat transfer model to predict the transient behaviour of a suspended flat plate solar collector with constant flow of fluid (air) above the absorber has been presented. A reflecting sheet with an air gap between the absorber plate and bottom insulation to reduce heat loss has been used. The effect, on performance of the air heater, of the parameters viz, spacing between cover and plate, heat capacity of air and absorber plate, flow rate of fluid and collector length have been studied. The effect of changing the averaging inlet temperature with varying collector length has also been studied.  相似文献   

10.
The results of experiments performed on two non-porous solar absorber solar air heaters with and without fins have been reported in this communication. The experiments were performed under laboratory conditions. Air heaters with fins are seen to be more efficient in comparison to the air heater without fins for air flow rates ≤0.0388 kg/sec per m2. The experimental results have been used to validate a simple theoretical model.  相似文献   

11.
H. D. Ammari   《Renewable Energy》2003,28(10):1597
A mathematical model for computing the thermal performance of a single pass flat-plate solar air collector is presented. Air channels were formed by providing metal slats running along the circulated air passage linking the absorber plate by the bottom one in an endeavor to enhance the thermal efficiency of the solar air collector. A mathematical model, therefore, is developed by which the influence of the addition of the metal slats on the efficiency of the solar collector is studied. A computer code that employs an iterative solution procedure is constructed to solve for the governing energy equations to estimate the mean temperatures of the collector. The effect of volume airflow rate, collector length, and spacing between the absorber and bottom plates on the thermal performance of the present solar air heater was investigated. Furthermore, a numerical comparison of the present design with the most common type of solar air heaters is conducted. The results of the comparison have indicated that better thermal performance was obtained by the modified system.  相似文献   

12.
Thermal performance of solar air heater is low and different techniques are adopted to increase the performance of solar air heaters, such as: fins, artificial roughness etc. In this paper an attempt has been done to optimize the thermal performance of flat plate solar air heater by considering the different system and operating parameters to obtain maximum thermal performance. Thermal performance is obtained for different Reynolds number, emissivity of the plate, tilt angle and number of glass plates by using genetic algorithm.  相似文献   

13.
In the present communication, an analytical model to study the performance of a two channel suspended flat plate air heater is presented. The effect of different parameters, e.g. spacing between the plates, plate length, same and different flow rates of air in the two channels of the air heater, on the air temperature has been studied. A comparison of single channel and two channel air heaters has also been made. Numerical calculations have been made for a typical cold day in Delhi, viz. Jan. 26, 1980.  相似文献   

14.
Based on a simple transient analysis, an explicit expression for the temperature of air, flowing through the channel of a suspended flat-plate solar air heater, has been developed as a function of time and space co-ordinates. Investigations regarding the effect of various parameters, such as air velocity, air channel depth and inlet air temperature, on the performance of the system have been carried out under two modes of operation; (1) the time is kept constant while the space co-ordinate along the flow direction is varied, and (2), the latter is kept constant while the former is varied.  相似文献   

15.
In this experimental study, an exergetic analysis is presented for solar air heaters (SAHs) that have absorber plates equipped with different fin arrangements. The following two types of fins were used: solid fins (conventional) and metal foam fins. Longitudinal, staggered, and corrugated fin arrangements in SAHs were investigated under the weather conditions experienced in Baghdad, Iraq in February to April 2018. The exergy efficiency and exergy loss of the SAHs were evaluated for five air mass flow rates ranging from 0.011 to 0.059 kg/s. Based on the exergy analysis, SAHs with metal foam fins are more efficient than those with solid fins. In addition, corrugated metal foam fins introduce more turbulent flow than the other fin configurations. It was found that the exergy loss and the exergy efficiency were directly proportional to the values of solar irradiance and air mass flow rates. At solar noon, the maximum values for exergy change were 127 and 89 W/m2 for air mass flow rates of 0.011 and 0.059 kg/s, respectively.  相似文献   

16.
This paper presents a distributed energy system (DES) for a local district and formulates a constrained nonlinear multiobjective optimization model for the daily operation of the system. The main objective of the study is to increase the efficiency by minimizing energy cost, energy consumption, and energy losses. It is implemented through the integration and complementation of renewable energies and fossil fuels as well as the recycling utilization of waste heat in the DES. The consideration of network topology and energy losses of water heating network could also contribute to the improvement of energy efficiency. To solve the optimization problem, a novel Whale Optimization Algorithm is employed. Furthermore, the economic and energy performance of the DES are evaluated and compared with that of conventional centralized energy systems, ie, the EG and MG energy‐supply modes. After simulation studies, the hourly optimal energy (both natural gas and electricity) purchasing schedule as well as the hourly optimal set points of mass water flow rates and supply/return water temperatures could be determined. The results show that the DES saves more than 50% of energy costs/energy consumption than the MG mode and over 22% than the EG mode for a whole day, verifying the competitive advantage and great potential of both energy saving and cost reduction of the DES.  相似文献   

17.
A dimensionless analysis of matrix air heaters has been developed to study the effect of different boundary conditions on its performance. The theoretical results have been compared with measurements of an experiment performed with one type of matrix solar air heater. For the fourth set of boundary conditions, the theoretical results agree fairly well with experimental data, thus providing confidence in particular boundary conditions. For this particular set of boundary conditions, the thermal performance of the system has been studied for different mass flow rates of air and as a function of other physical parameters.  相似文献   

18.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

19.
In this communication, an inexpensive underground shallow solar pond (SSP) water heater has been suggested, and its performance has also been studied in detail. An explicit analytical expression for temperature has been obtained. The effect of various parameters, viz duration of covering the system by insulation, duration of flow rate, flow rate, insulation thickness, water mass, etc. have also been discussed. Numerical calculations have been made for a typical cold day.  相似文献   

20.
An experimental investigation is carried out on a forced circulation solar water heater to assess its performance under various operating conditions. The system consisted of two identical collectors of total absorber area of 3.45 m2 and a storage tank of 200 litre capacity. Experiments were carried out during clear days with and without system loading for two water mass flow rates through the collector; namely 0.1305 kg/s and 0.06525 kg/s. The system was operated without thermostat control and with thermostat control at maximum and minimum settings. The collector efficiency improved with system loading. The improvement was better with increased hot water withdrawal from the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号