首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We describe a method to conveniently fabricate micron- and submicron-sized patterns of well-ordered and densely-packed dicyanopyrazine-linked porphyrin (4-TDCPP) molecules by using micro-contact printing (micro-CP) in conjunction with Langmuir-Blodgett (LB) deposition. SEM and AFM images reveal that the sizes and shapes of the 4-TDCPP patterns are well-matched with the geometric features of the polydimethylsiloxane (PDMS) stamps used for micro-CP. Fluorescence images show strong, red emission from the 4-TDCPP patterns. However, the thicknesses of the 4-TDCPP patterns transferred onto a silicon substrate by micro-CP are not the same, even though the same amount of 4-TDCPP layers are deposited on the surface of PDMS stamps in the LB process. The thicknesses of the 10 microm line, 2 microm dot and 300 nm line patterns of 10-layered 4-TDCPP molecules are 34.6, 26.7 and 5.9 nm, respectively. These differences may be due to variations in adhesion forces between the silicon substrate and 4-TDCPP on PDMS stamps having different size patterns. Larger patterns have greater contact areas compared to smaller patterns. This phenomenon can cause stronger adhesion forces, resulting in greater pattern thickness.  相似文献   

2.
This paper presents the fabrication of a thin and flexible polydimethylsiloxane (PDMS) stamp with a thickness of a few tens of um and its application to nanoimprint lithography (NIL). The PDMS material generally has a low elastic modulus and high adhesive characteristics. Therefore, after being treated, the thin PDMS stamp is easily deformed and torn, adhering to itself and other materials. This paper introduces the use of a metal ring around the flange of a thin PDMS stamp to assist with the handling of this material. A PDMS stamp with a motheye pattern in nanometer scale was inserted between a substrate and a microstamp with concave patterns in micrometer scale. Subsequently, three-dimensional (3D) hybrid nano/micropatterns were fabricated by pressing these two stamps and curing the resist. The fabricated hybrid patterns were measured and verified in both the microscale and nanoscale. The process, termed "dual NIL," can be applied to the fabrication of optical components or bio-sensors that require repetitive nanopatterns on micropatterns.  相似文献   

3.
Great efforts have been devoted to the control of phase separation between blended polymers in terms of the advantages for engineering functional topologies. A simple and straightforward pathway through roughness transfer printing (RTP) is proposed to realize the control of polymer phase separation. The additional roughness difference, which is introduced by trace agarose transferred from a hydrogel stamp, offers a great effect on the rate of nucleation and coalescence orientation of polymethylmethacrylate (PMMA) protrusions grown from a polydimethylsiloxane (PDMS) network. Using a particular topography of agarose stamp and a proper growth time in toluene atmosphere, a 2D microlens array with high uniformity is obtained that shows great potential for optical applications. Moreover, the control of polymer phase separation was successfully extended to the collection and identification of fingerprints with a high degree of replication.  相似文献   

4.
Here, a negative microcontact printing method is developed to form hydrophilic polydopamine (PDA) patterns with micrometer resolution on hydrophobic including perfluorinated surfaces. In the process of the negative microcontact printing, a uniform PDA thin film is first formed on the hydrophobic surface. An activated polydimethylsiloxane (PDMS) stamp is then placed in contact with the PDA‐coated hydrophobic surface. Taking advantage of the difference in the surface energy between the hydrophobic surface and the stamp, PDA is removed from the contact area after the stamp release. As a result, a PDA pattern complementary to the stamp is obtained on the hydrophobic surface. By using the negative microcontact printing, arrays of liquid droplets and single cells are reliably formed on perfluorinated surfaces. Microlens array with tunable focal length for imaging studies is further created based on the droplet array. The negative microcontact printing method is expected to be widely applicable in high‐throughput chemical and biological screening and analysis.  相似文献   

5.
Kao YC  Hong FC 《Nanotechnology》2011,22(18):185303
In this study, we have used an agarose stamp to conduct direct printing of silver nanoparticles, nanowires and nanoplates on both planar and structured substrates. Nanoparticle solution could be first coated on an agarose stamp, and then transferred to a planar substrate. Micro-patterns comprising metal nanoparticles could be printed on planar substrates without the formation of residual layers. Thus a three-dimensional metal microstructure could be easily fabricated. The patterning of electrodes by printing Ag nanowires directly on TiO(2) was also demonstrated to fabricate resistive random access memory (RRAM) devices by all-solution-processing methods. By using a flat agarose stamp, the patterns printed on the microstructured substrates were quite different from those on the nanostructured substrates. On the microstructured substrates, direct printing could print silver nanoparticles onto the protrusion surface, and could print silver layers as thick as several microns, useful for high conductivity electrodes. On the substrates with nanostructures such as photonic crystals or nano-gratings, direct printing could transfer nanoparticles into the grooves or cavities only due to the contact of the agarose stamp with the groove or concavity surface. A new approach to fabricate metal wire grid polarizers was further demonstrated. A nanoporous agarose stamp has a good potential for printing using nanoparticle suspension.  相似文献   

6.
以聚二甲基硅氧(PDMS)弹性体为印模,十八烷基三氯硅烷(OTS)为"墨水",采用微接触印刷法分别在平整的玻璃基片表面和弯曲的玻璃棒表面进行印刷操作,将印刷后的基片浸入到PbS化学浴液中沉积得到微图案化的PbS薄膜.交叉印刷和光学显微观察结果表明,所沉积的PbS微图案边界清晰规整,并且PbS会选择性沉积在基片表面没有被OTS覆盖的区域.  相似文献   

7.
This paper shows a novel nano-imprint method with a polydimethylsiloxane (PDMS) replica mold that was bonded on a cylindrically inflated polycarbonate (PC) film via a low air pressure. The PDMS mold, which was deformed in terms of its cylindrical shape, made a line contact with a substrate from the center region and the contact region, then expanded gradually to the outside of the substrate when the contact force increased. This contact procedure squeezed the resin that was dropped on the substrate from the center to the outside, which prevented the trapping of air bubbles while the cavities were filled with the patterns on the PDMS mold. The main characteristic of the proposed process was that the nano-imprint can be realized under a low pressure, compared to conventional processes. We will show the system that was implemented under the proposed process concept and the patterns that were transferred in an ultraviolet curable resin under pressure conditions of less than 5 kPa.  相似文献   

8.
We were able to reduce the processing steps of transfer printing of thin gold films through prolonged evaporation times. We suspect the reduced evaporation rate to cause diffusion of small chain molecules (oligomers) in the PDMS (poly(dimethylsiloxane)) stamp to facilitate the transfer. Typical wrinkling of the PDMS surface was avoided by fabricating thin stamps of approximately 50 μm with polymer backing. The transferred films with a thickness of 20 nm showed enhanced edge resolution and a roughness of 1.31 nm root mean square. We were further able to fabricate 3D structures, indicating stability of the transferred films. Adhesion problems remain a limitation for contacting purposes.  相似文献   

9.
The control of surface properties and spatial presentation of functional molecules within a microfluidic channel is important for the development of diagnostic assays and microreactors and for performing fundamental studies of cell biology and fluid mechanics. Here, we present a simple technique, applicable to many soft lithographic methods, to fabricate robust microchannels with precise control over the spatial properties of the substrate. In this approach, the patterned regions were protected from oxygen plasma by controlling the dimensions of the poly(dimethylsiloxane) (PDMS) stamp and by leaving the stamp in place during the plasma treatment process. The PDMS stamp was then removed, and the microfluidic mold was irreversibly bonded to the substrate. The approach was used to pattern a nonbiofouling poly(ethylene glycol)-based copolymer or the polysaccharide hyaluronic acid within microfluidic channels. These nonbiofouling patterns were then used to fabricate arrays of fibronectin and bovine serum albumin as well as mammalian cells. In addition, further control over the deposition of multiple proteins onto multiple or individual patterns was achieved using laminar flow. Also, cells that were patterned within channels remained viable and capable of performing intracellular reactions and could be potentially lysed for analysis.  相似文献   

10.
Zinc phthalocyanine (ZnPc), C32H16N8Zn, is a planar organic molecule having numerous optical and electrical applications in organic electronics. This work investigates the influence of various deposition parameters on the morphology of vapour thermal evaporated ZnPc films. For this purpose, ZnPc is deposited at different substrate temperatures up to 90 °C and film thickness up to 50 nm onto various substrates. The morphology of this ZnPc layers is characterised by X-ray diffraction (XRD), X-ray reflectivity (XRR) and atomic force microscopy (AFM) methods. XRD measurements show that all ZnPc films are crystalline in a triclinic (α-ZnPc) or monoclinic (γ-ZnPc) phase, independent from the kind of substrate, layer thickness, or substrate temperature. The ZnPc powder, the starting product for the thermally evaporated ZnPc films, is present in the stable monoclinic β-phase. Thus, the stacking of the ZnPc molecules changes completely during deposition. The crystallite size perpendicular to the substrate determined by XRD microstructure analysis is in the range of the layer thickness while the lateral size, obtained by AFM, is increasing with substrate temperature and film thickness. AFM and XRR show an increase of the layer roughness for thicker ZnPc layers and higher substrate temperatures during film deposition. The strain in the ZnPc films decreases for higher substrate temperatures due to enhanced thermal relaxation and for thicker ZnPc films due to lower surface tension.  相似文献   

11.
Chuang WC  Ho CT  Chang WC 《Applied optics》2006,45(32):8304-8307
We have developed a soft-lithography method to replicate polymer waveguides. In this method, the waveguides are produced by a two-step molding process where a master mold is first formed on a negative-tone photoresist and subsequently transferred to a polydimethylsiloxane (PDMS) mold; a PDMS silicone rubber mold is then used as a stamp to transfer the final waveguide pattern onto an UV cure epoxy. Initial results show good pattern transferring in physical shape. The optical performance is measured based on the propagation loss. In our design, the loss was measured at 0.28 dB/cm for 1.3 microm and 0.26 dB/cm for 1.55 microm.  相似文献   

12.
Park J  Shin G  Ha JS 《Nanotechnology》2008,19(39):395303
Previously, we suggested a facile method to transfer dioctadecyldimethylammonium bromide (DODAB)/V(2)O(5) nanowire hybrid patterns onto both hydrophobic and hydrophilic substrates via microcontact printing combined with the Langmuir-Blodgett (LB) technique (Park et al 2007 Nanotechnology 18 405301). Herein, we report on the delicate control of the orientation of V(2)O(5) nanowires within the micropatterns transferred via the gluing LB technique using a patterned polydimethylsilicate (PDMS) stamp. According to the orientation of the PDMS line patterns relative to the air-water interface, the aligned orientation of the nanowires, either parallel or perpendicular to the patterns, could be obtained and attributed to the moving direction of the water menisci formed between the PDMS stamp and water. In particular, addition of a small amount of ethanol in the subphase enhanced the dispersion of the DODAB at the air-water interface as well as the aggregation of V(2)O(5) nanowires, resulting in alignment of the V(2)O(5) nanowires via compression of the hybrid LB film by a barrier. Directional alignment of nanowires has potentially broad applications in the fabrication of aligned nanowire devices.  相似文献   

13.
We have discovered a micro/nanopatterning technique based on the patterning of a PDMS membrane/film, which involves bonding a PDMS structure/stamp (that has the desired patterns) to a PDMS film. The technique, which we call "bond-detach lithography", was demonstrated (in conjunction with other microfabrication techniques) by transferring several micro- and nanoscale patterns onto a variety of substrates. Bond-detach lithography is a parallel process technique in which a master mold can be used many times, and is particularly simple and inexpensive.  相似文献   

14.
We used micro contact printing (micro-CP) to fabricate inverted coplanar pentacene thin film transistors (TFTs) with 1-microm channels. The patterning of micro-scale source/drain electrodes without etch process was successfully achieved using Polydimethylsiloxane (PDMS) elastomer stamp. We used the Ag nano particle ink as an electrode material, and the sheet resistance and surface roughness of the Ag electrodes were effectively reduced with the 2-step thermal annealing on a hotplate, which improved the mobility, the on-off ratio, and the subthreshold slope (SS) of the pentacene TFTs. In addition, the device annealing on a hotplate in a N2 atmosphere for 30 sec can enhance the off-current and the mobility properties of OTFTs without damaging the pentacene thin films and increase the adhesion between pentacene and dielectric layer (SiO2), which was investigated with the pentacene films phase change of the XRD spectrum after device annealing.  相似文献   

15.
气囊气缸式真空紫外纳米压印设备研制   总被引:1,自引:0,他引:1  
本文介绍了紫外纳米压印技术原理,以及工艺中模板与基片的平行度对压印质量的影响.研制了气囊气缸式真空紫外纳米压印设备,其通过气囊气缸使模板与基片平行,从而可在大面积基片上确保压力均匀.研制了相应的光学系统,着重讨论了如何实现紫外纳米压印以及光学系统的设计和调整.制备了石英玻璃模板,实现了在商用紫外固化聚合物OG154上的紫外纳米压印,转移复制了具有100rim特征的5cmx5cm面积的纳米结构图形.  相似文献   

16.
In this research, we have fabricated micron-sized patterns of porphyrins on silicon substrates using an electrohydrodynamic (EHD) jet printing technique. Optical and fluorescence microscopies have been used to examine the shape and fluorescence property of porphyrin patterns. The morphology of the porphyrin patterns printed with variously formulated porphyrin inks and the effects of applied voltage, working distance, and substrate properties on the morphology of patterns were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). We have also demonstrated the acid-vapor sensing capability of the porphyrins by exposing the porphyrin patterns on Si substrates to nitric acid vapor.  相似文献   

17.
Wafer scale (cm(2)) arrays and networks of nanochannels were created in polydimethylsiloxane (PDMS) from a surface pattern of electrodeposited gold nanowires in a master-replica process and characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM), and fluorescence imaging measurements. Patterns of gold nanowires with cross-sectional dimensions as small as 50 nm in height and 100 nm in width were prepared on silica substrates using the process of lithographically patterned nanowire electrodeposition (LPNE). These nanowire patterns were then employed as masters for the fabrication of inverse replica nanochannels in a special formulation of PDMS. SEM and AFM measurements verified a linear correlation between the widths and heights of the nanowires and nanochannels over a range of 50 to 500 nm. The PDMS replica was then oxygen plasma-bonded to a glass substrate in order to create a linear array of nanofluidic channels (up to 1 mm in length) filled with solutions of either fluorescent dye or 20 nm diameter fluorescent polymer nanoparticles. Nanochannel continuity and a 99% fill success rate was determined from the fluorescence imaging measurements, and the electrophoretic injection of both dye and nanoparticles in the nanochannel arrays was also demonstrated. Employing a double LPNE fabrication method, this master-replica process was also used to create a large two-dimensional network of crossed nanofluidic channels.  相似文献   

18.
为了在PET基底上制备精细的透明网格状导电图案, 本工作利用微接触印刷高精度的优势, 分别采用线条结构和网格结构的印章转印银纳米粒子导电油墨, 分析了其转印过程, 并讨论了印章结构对网格图案性能的影响。结果表明: 采用线条结构的印章可真实还原印章设计尺寸, 避免了线条的扩展, 有利于提高网格图案的透光率; 同时, 在交叉处墨层较厚可提高导电性。而采用网格结构印章可一次转移快速获得网格图案, 但由于印章网格上相邻线条之间液桥的形成会使图案线宽增加, 降低其透光率; 采用间距较大的印章可使液桥断裂, 得到边缘光滑的网格图案, 但间距增大导致单位面积导电路径减少, 降低其导电性。总之, 采用线条结构印章有利于获得性能较好的网格图案, 但两次转移过程相对复杂, 需用时间较长。  相似文献   

19.
Microstructure of tungsten thin films deposited by RF-sputtering is studied as a function of their thicknesses. These films have been deposited on (100) oriented single crystal Si substrate and Si substrate covered by a 100-nm-thick Ti layer. The crystalline structure is studied by X-ray Diffraction (XRD) and Grazing Incidence XRD (GIXRD). The surface and the cross-section morphology are observed by high resolution Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). XRD patterns exhibit peaks corresponding to pure W phase. GIXRD analysis shows that the more the thickness increases, the more the film is oriented along the [110] direction. AFM observations show that films exhibit a particular morphology constituted of “piles of platelets” oriented perpendicularly to the wafer surface. These “piles of platelets” are in plane randomly oriented and are sometime observed upon all the thicknesses of the layer. This particular morphology is observed whatever the substrate is, and is explained by thin layer growth theories.  相似文献   

20.
A method for the fabrication of well‐defined metallic nanostructures is presented here in a simple and straightforward fashion. As an alternative to lithographic techniques, this routine employs microcontact printing utilizing wrinkled stamps, which are prepared from polydimethylsiloxane (PDMS), and includes the formation of hydrophobic stripe patterns on a substrate via the transfer of oligomeric PDMS. Subsequent backfilling of the interspaces between these stripes with a hydroxyl‐functional poly(2‐vinyl pyridine) then provides the basic pattern for the deposition of citrate‐stabilized gold nanoparticles promoted by electrostatic interaction. The resulting metallic nanostripes can be further customized by peeling off particles in a second microcontact printing step, which employs poly(ethylene imine) surface‐decorated wrinkled stamps, to form nanolattices. Due to the independent adjustability of the period dimensions of the wrinkled stamps and stamp orientation with respect to the substrate, particle arrays on the (sub)micro‐scale with various kinds of geometries are accessible in a straightforward fashion. This work provides an alternative, cost‐effective, and scalable surface‐patterning technique to fabricate nanolattice structures applicable to multiple types of functional nanoparticles. Being a top‐down method, this process could be readily implemented into, e.g., the fabrication of optical and sensing devices on a large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号