首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Interactions between 3d transition-metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) and (5,5) carbon nanotube (CNT) with a vacancy defect are quantitatively characterized using first-principles calculations. The binding energies between CNT and transition metals are found to be significantly enhanced when vacancy defects are introduced into the CNT. For the defective CNTs doped with Sc, Cr and Zn atoms, the structures of defective CNTs are found to be intact. The doping of Ti, Mn, Cu, Fe, Ni and Co alternates the structures of defective CNTs. Among all 3d transition metals, only the ferromagnetic metal atoms Fe, Co and Ni form bonds with carbon atoms of CNT, suggesting the important role of magnetic exchange interaction in the p–d hybridisation between carbons and transition-metal atoms. The results also indicate that the 3d transition-metal atoms acting as substitutional defects can substantially modify the electronic structure of CNT. It is suggested that these stable CNT-metal systems could become promising engineering materials in many fields such as CNT devices for various spintronics applications and CNT metal–matrix composites.  相似文献   

2.
Qi J  Qian X  Qi L  Feng J  Shi D  Li J 《Nano letters》2012,12(3):1224-1228
Two-dimensional atomic sheets such as graphene and boron nitride monolayers represent a new class of nanostructured materials for a variety of applications. However, the intrinsic electronic structure of graphene and h-BN atomic sheets limits their direct application in electronic devices. By first-principles density functional theory calculations we demonstrate that band gap of zigzag BN nanoribbons can be significantly tuned under uniaxial tensile strain. The unexpected sensitivity of band gap results from reduced orbital hybridization upon elastic strain. Furthermore, sizable dipole moment and piezoelectric effect are found in these ribbons owing to structural asymmetry and hydrogen passivation. This will offer new opportunities to optimize two-dimensional nanoribbons for applications such as electronic, piezoelectric, photovoltaic, and opto-electronic devices.  相似文献   

3.
The use of carbon nanotubes (CNTs) as cylindrical reactor vessels has become a viable means for synthesizing graphene nanoribbons (GNRs). While previous studies demonstrated that the size and edge structure of the as‐produced GNRs are strongly dependent on the diameter of the tubes and the nature of the precursor, the atomic interactions between GNRs and surrounding CNTs and their effect on the electronic properties of the overall system are not well understood. Here, it is shown that the functional terminations of the GNR edges can have a strong influence on the electronic structure of the system. Analysis of SWCNTs before and after the insertion of sulfur‐terminated GNRs suggests a metallization of the majority of semiconducting SWCNTs. This is indicated by changes in the radial breathing modes and the D and G band Raman features, as well as UV–vis–NIR absorption spectra. The variation in resonance conditions of the nanotubes following GNR insertion make direct (n,m) assignment by Raman spectroscopy difficult. Thus, density functional theory calculations of representative GNR/SWCNT systems are performed. The results confirm significant changes in the band structure, including the development of a metallic state in the semiconducting SWCNTs due to sulfur/tube interactions. The GNR‐induced metallization of semiconducting SWCNTs may offer a means of controlling the electronic properties of bulk CNT samples and eliminate the need for a physical separation of semiconducting and metallic tubes.  相似文献   

4.
本研究采用基于密度泛函理论的第一性原理方法,在局域密度近似和广义梯度近似下,研究了单点缺陷下不同结构氧化石墨烯的电子结构和光学特性。研究结果表明:文中四种构型的氧化石墨烯为力学稳定结构,其中包含不饱和氧原子的氧化石墨烯结构在水裂解及制氢中具有重要应用潜力。能带及分波态密度计算结果表明,包含不饱和氧原子的构型为间接带隙半导体,其余构型均为直接带隙半导体,且掺杂类型和带隙值随结构不同而改变。氧化石墨烯的光学吸收表现为各向异性,且在垂直于平面方向上的吸收边蓝移到近紫外可见光区。包含sp3杂化形式的结构光学吸收系数比包含sp2杂化的结构高,说明碳氧双键和悬挂键的存在对吸收光谱有重要影响。  相似文献   

5.
Reactions of hydrogen with electronic materials are important for the operation of related devices. Here we use first-principles density-functional theory calculations to describe hydrogen reactions on pristine and defective graphene. We show that small hydrogen clusters on defect-free graphene are unstable against emission of hydrogen molecules and that the associated reaction energies and barriers have a subtle dependence on the type of the clusters. In contrast, chemisorption of hydrogen in the vicinity of graphene vacancies leads to progressively larger clusters of adatoms and, eventually, to formation of graphane. The results are relevant to the optimization of graphene- and graphane-based devices, as well to the creation of graphene–graphane hybrid systems.  相似文献   

6.
Multishell Carrier Transport in Multiwalled Carbon Nanotubes   总被引:1,自引:0,他引:1  
Understanding carrier transport in carbon nanotubes (CNTs) and their networks is important for harnessing CNTs for device applications. Here, we report multishell carrier transport in individual multiwalled CNTs, and films of randomly dispersed multiwalled CNTs, as a function of electric field and temperature. Electrical measurements and first-principles density functional theory calculations indicate transport across CNT shells. Intershell conduction occurs across an energy barrier range of 60-250 meV in individual CNTs, and ~ 60 meV in CNT networks. In both cases, the conductance behavior can be explained based upon field-enhanced carrier injection and defect-enhanced transport, as described by the Poole-Frenkel model.  相似文献   

7.
This paper describes the fabrication and characterization of a hybrid nanostructure comprised of carbon nanotubes (CNTs) grown on graphene layers for supercapacitor applications. The entire nanostructure (CNTs and graphene) was fabricated via atmospheric pressure chemical vapor deposition (APCVD) and designed to minimize self-aggregation of the graphene and CNTs. Growth parameters of the CNTs were optimized by adjusting the gas flow rates of hydrogen and methane to control the simultaneous, competing reactions of carbon formation toward CNT growth and hydrogenation which suppresses CNT growth via hydrogen etching of carbon. Characterization of the supercapacitor performance of the CNT-graphene hybrid nanostructure indicated that the average measured capacitance of a fabricated graphene-CNT structure was 653.7 μF cm(-2) at 10 mV s(-1) with a standard rectangular cyclic voltammetry curve. Rapid charging-discharging characteristics (mV s(-1)) were exhibited with a capacitance of approximately 75% (490.3 μF cm(-2)). These experimental results indicate that this CNT-graphene structure has the potential towards three-dimensional (3D) graphene-CNT multi-stack structures for high-performance supercapacitors.  相似文献   

8.
Materials with an ultralow density and ultrahigh electromagnetic‐interference (EMI)‐shielding performance are highly desirable in fields of aerospace, portable electronics, and so on. Theoretical work predicts that 3D carbon nanotube (CNT)/graphene hybrids are one of the most promising lightweight EMI shielding materials, owing to their unique nanostructures and extraordinary electronic properties. Herein, for the first time, a lightweight, flexible, and conductive CNT–multilayered graphene edge plane (MLGEP) core–shell hybrid foam is fabricated using chemical vapor deposition. MLGEPs are seamlessly grown on the CNTs, and the hybrid foam exhibits excellent EMI shielding effectiveness which exceeds 38.4 or 47.5 dB in X‐band at 1.6 mm, while the density is merely 0.0058 or 0.0089 g cm?3, respectively, which far surpasses the best values of reported carbon‐based composite materials. The grafted MLGEPs on CNTs can obviously enhance the penetration losses of microwaves in foams, leading to a greatly improved EMI shielding performance. In addition, the CNT–MLGEP hybrids also exhibit a great potential as nano‐reinforcements for fabricating high‐strength polymer‐based composites. The results provide an alternative approach to fully explore the potentials of CNT and graphene, for developing advanced multifunctional materials.  相似文献   

9.
Carbon nanotubes (CNTs) have been recently taken into consideration as mechanical resonators of distinguished capabilities. This study aims at investigating the free vibration characteristics of a single-walled CNT in the vicinity of a fully constrained graphene sheet. Using a molecular structural mechanics model and considering nonlinear van-der-Waals interactions, the static deformation of the nanotube is obtained using an iterative procedure. Then, the governing equations of motion are linearized about the static equilibrium state and the natural frequencies are obtained. The molecular structural mechanics model is verified using established results in literature and then a survey is performed on the natural frequencies of the CNT’s beam-like modes in various distances from the graphene sheet.  相似文献   

10.
The electronic structures and structural properties of body-centered cubic Ti–Mo alloys were studied by first-principles calculations. The special quasirandom structures (SQS) model was adopted to emulate the solid solution state of the alloys. The valence band electronic structures of Ti–Mo and Ti–Mo–Fe alloys were measured by hard x-ray photoelectron spectroscopy.

The structural parameters and valence band photoelectron spectra were calculated using first-principles calculations. The results obtained with the SQS models showed better agreement with the experimental results than those obtained using the conventional ordered structure models. This indicates that the SQS model is effective for predicting the various properties of solid solution alloys by means of first-principles calculations.  相似文献   


11.
Wei Y  Liu P  Zhu F  Jiang K  Li Q  Fan S 《Nano letters》2012,12(4):2071-2076
Carbon nanotube (CNT) micro tip arrays with hairpin structures on patterned silicon wafers were efficiently fabricated by tailoring the cross-stacked CNT sheet with laser. A blade-like structure was formed at the laser-cut edges of the CNT sheet. CNT field emitters, pulled out from the end of the hairpin by an adhesive tape, can provide 150 μA intrinsic emission currents with low beam noise. The nice field emission is ascribed to the Joule-heating-induced desorption of the emitter surface by the hairpin structure, the high temperature annealing effect, and the surface morphology. The CNT emitters with hairpin structures will greatly promote the applications of CNTs in vacuum electronic devices and hold the promises to be used as the hot tips for thermochemical nanolithography. More CNT-based structures and devices can be fabricated on a large scale by this versatile method.  相似文献   

12.
A tight-binding analytic framework is combined with first-principles calculations to reveal the mechanism underlying the strain effects on electronic structures of graphene and graphene nanoribbons (GNRs). It provides a unified and precise formulation of the strain effects under various circumstances-including the shift of the Fermi (Dirac) points, the change in band gap of armchair GNRs with uniaxial strain in a zigzag pattern and its insensitivity to shear strain, and the variation of the k-range of edge states in zigzag GNRs under uniaxial and shear strains which determine the gap behavior via the spin polarization interaction.   相似文献   

13.
From first-principles calculations, we predict a planar stable graphene allotrope composed of a periodic array of tetragonal and octagonal (4, 8) carbon rings. The stability of this sheet is predicted from the room-temperature molecular dynamics study and the electronic structure is studied using state-of-the-art calculations such as the hybrid density functional and the GW approach. Moreover, the mechanical properties of (4, 8) carbon sheet are evaluated from the Young's modulus and intrinsic strength calculations. We find this is a stable planar semiconducting carbon sheet with a bandgap between 0.43 and 1.01?eV and whose mechanical properties are as good as graphene's.  相似文献   

14.
This paper studies the first-principles calculations of the effect of hydrostatic pressure on the structural, electronic and magnetic properties of Ga0.75Cr0.25As dilute magnetic semiconductor in zb (B3) phase. High-pressure behaviour of Ga0.75Cr0.25As has been investigated between 0 and 100 GPa. The calculations have been performed using DFT as implemented in code SIESTA using LDA + U as an exchange-correlation (XC) potential. The study of band structures shows half-metallic ferromagnetic nature with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted from their positions which lead to modification of electronic structure.  相似文献   

15.
Molecular dynamics simulations are used to compute the potential of mean force (PMF) governing the interactions between carbon nanotubes (CNTs) in water/surfactant systems. The effects of CNT length, diameter, chirality (armchair and zigzag) and surfactant structures on CNT interaction and dispersion in water/surfactant systems are investigated for (5, 5), (5, 0), and (10, 10) single walled CNTs with two commonly used surfactants [viz., sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)] at room conditions. An adaptive biasing force method was used to speed up the calculations. Simulations revealed that CNT length and diameter as well as optimum amount of surfactant addition and its structures can significantly affect CNT interactions (i.e., PMFs vary significantly). Surfactant molecules were found to adsorb at the CNT surface and reduced interaction strength between CNTs. SDBS surfactant contributed weaker interactions between CNTs as compared with that of SDS surfactant by a factor of about 10 indicating that SDBS is better than SDS for dispersing CNTs in an aqueous suspension. This phenomenon agrees qualitatively with the experimental results reported in the literature. The understanding of detailed atomic arrangements and atomic interactions between CNTs and surrounding molecules reported in this study is significantly helpful to computationally screening different surfactants and improving the CNT dispersion in aqueous solution. The method will also facilitate the reduction of time and cost required to produce CNT reinforced nanocomposite materials as well as homogeneous CNT dispersed solutions for many biological applications.  相似文献   

16.
Semiconductor photocatalysts capable of broadband solar photon absorption may be nonetheless precluded from use in driving water splitting and other solar-to-fuel related reactions due to unfavorable band edge energy alignment. Using first-principles density functional theory and beyond, we calculate the electronic structure of passivated CdSe surfaces and explore the opportunity to tune band edge energies of this and related semiconductors via electrostatic dipoles associated with chemisorbed ligands. We predict substantial shifts in band edge energies originating from both the induced dipole at the ligand/CdSe interface and the intrinsic dipole of the ligand. Building on important induced dipole contributions, we further show that, by changing the size and orientation of the ligand's intrinsic dipole moment via functionalization, we can control the direction and magnitude of the shifts of CdSe electronic levels. Our calculations suggest a general strategy for enabling new active semiconductor photocatalysts with both optimal opto-electronic, and photo- and electrochemical properties.  相似文献   

17.
This article reviews the latest developments in the synthesis of Graphene, Carbon nanotubes and graphene/CNT based devices based on patents, patent applications and articles published in the last two years. A brief introduction about CNT and Graphene is presented, followed by the latest techniques and advanced processing for the large scale synthesis of Graphene and CNTs. Furthermore, a brief account of emerging devices based on applications of CNTs and graphene not limited to sensors, high speed electronics, energy harvesting and storage applications are presented.  相似文献   

18.
We investigated the changes in the first- and second-order Raman spectra of suspended crossed ultralong carbon nanotube (CNT) junctions using different laser excitation energies. The CNT junctions were in situ fabricated by growing CNTs in two perpendicular directions using chemical vapor deposition (CVD) technique. Raman spectra substantiated the structural deformation by the compression between CNTs in the junction. IV curves of crossed CNT junctions showed the linear behavior. These crossed CNT–CNT junctions have higher current values than individual CNTs. The coexisting suspended and unsuspended CNTs on the substrate showed higher sensitivity to infrared (IR) radiation but longer response time than those with only suspended ones or CNT junctions.  相似文献   

19.
Chemical reactivity and molecular structure of energetic materials may be significantly changed when they are confined inside carbon nanotubes (CNTs). The ONIOM calculations were carried out to investigate the molecular structures and the N-N bond decomposition of nitramide (NA) and methylnitramine (MNA) confined inside armchair single-walled CNTs with different diameter. Results showed that confinement in CNT(6, 6) and CNT(7, 7) had no evident influence on the structure of NA and MNA. However, the structures of NA and MNA within CNT(5, 5) were altered significantly with respect to the structures of the isolated NA and MNA. Compared with NA, MNA showed stronger interaction with these CNTs studied. By analyzing the potential energy curve along the N-N bond, we found that the energy barriers of the N-N bond decomposition for the NA and MNA are decreased by 11.6 and 10.8 kcal/mol, respectively, due to the confinement of CNT(5, 5). Confinement in CNT(6, 6) resulted in a slight decrease in the activation energy. Confinement in CNT(7, 7) did not affect the thermal decomposition of NA and MNA. We conclude that the N-N bond dissociation of NA and MNA can be promoted by confinement in a CNT with small diameter.  相似文献   

20.
《Composites Part A》2007,38(3):747-754
The influence of the polymer matrix density, chemical cross-links in the interface, and geometrical defect in the carbon nanotubes (CNTs) on the CNT pull-out from polymer has been analyzed by the molecular dynamics simulation. The interfacial shear strength (ISS) has also been estimated with the change of total potential energy. In the simulation, the crystalline polyethylene matrix is set up in a hexagonal array with the polymer chains parallel to the CNT axis. First, we investigate the effect of the polymer matrix density on the ISS by changing the distance between the chains. Simulated results show that the ISS increases with the increase of matrix density. Next, we examine the cross-link effect on the ISS by adding polyethylene cross-links in the interface. Here, an energy based switching criterion addressing cross-links traveling on the CNT has been proposed. It is found that the presence of cross-links and the cross-link positions affect the ISS. Finally, pentagon–heptagon defect, which reduces the tensile strength of the CNT and has been experimentally observed by Hashimoto et al. [Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S. Direct evidence for atomic defects in graphene layers. Nature 2004;430:870–3], has been addressed as a geometrical defect in the CNT. When cross-links are present between the CNT and the polymer, this defect reduces the ISS due to the improper connections of cross-links around this defective region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号