首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Ahn SM  Moon KW  Cho CG  Choe SB 《Nanotechnology》2011,22(8):085201
We have found that the depinning field of domain walls (DWs) in permalloy (Ni(81)Fe(19)) nanowires can be experimentally controlled by interactions between magnetic stray fields and artificial constrictions. A pinning geometry that consists of a notch and a nanobar is considered, where a DW traveling in the nanowire is pinned by the notch with a nanobar vertical to it. We have found that the direction of magnetization of the nanobar affects the shape and local energy minimum of the potential landscape experienced by the DW; therefore, the pinning strength strongly depends on the interaction of the magnetic stray field from the nanobar with the external pinning force of the notch. The mechanism of this pinning behavior is applied for the instant and flexible control of the pinning strength with respect to various DW motions in DW-mediated magnetic memory devices.  相似文献   

2.
It is experimentally reported herein that the injection field of domain walls (DWs) from the nucleation pad to the nanowire is controlled by the angle of the initializing magnetic field with the use of asymmetric sample structures. The injection field is abruptly varied twice between two distinct values at a certain angle. Micromagnetic simulation is used to model the injection of a DW into the nanowire with respect to the angle of the initializing magnetic field. This is ascribed to the different structure of the DW at the junction between the pad and the nanowire, resulting in the different pinning strength of the DW. These observations provide a way to control the injection field of DWs into nanostructures and give a possibility of the fast, reliable motion of the DW with field strengths less than the so-called Walker field on the nanowire by injecting the DW with a known magnetic structure.  相似文献   

3.
Patterned magnetic nanowires are extremely well suited for data storage and logic devices. They offer non-volatile storage, fast switching times, efficient operation and a bistable magnetic configuration that are convenient for representing digital information. Key to this is the high level of control that is possible over the position and behaviour of domain walls (DWs) in magnetic nanowires. Magnetic random access memory based on the propagation of DWs in nanowires has been released commercially, while more dynamic shift register memory and logic circuits have been demonstrated. Here, we discuss the present standing of this technology as well as reviewing some of the basic DW effects that have been observed and the underlying physics of DW motion. We also discuss the future direction of magnetic nanowire technology to look at possible developments, hurdles to overcome and what nanowire devices may appear in the future, both in classical information technology and beyond into quantum computation and biology.  相似文献   

4.
We have studied the current-driven depinning processes for a narrow 12-nm wide one-dimensional Bloch domain wall (DW) in films exhibiting perpendicular magnetic anisotropy (PMA). High sensitivity magnetotransport measurements allow us to observe the motion of the narrow DW between pinned sites separated by /spl sim/20 nm. Thermal fluctuations are found to play a crucial role. A current-driven depinning force two to three orders of magnitude higher than has been seen in conventional in-plane systems is found, suggesting a more efficient spin transfer mechanism in our PMA system.  相似文献   

5.
Kim KJ  Moon KW  Lee KS  Choe SB 《Nanotechnology》2011,22(2):025702
We propose a method to control the polarization of the magnetic domain walls (DWs) in ferromagnetic nanowires. Two neighboring DWs with antiparallel polarization alignment rather than parallel alignment are found to exhibit better stability with a helical magnetic structure that can be hardly be detangled. To achieve such an antiparallel alignment, two co-planar current lines with an angle to the nanowire are designed, from which the Oersted field creates a domain in between the current lines while keeping the polarization of the DWs beneath the current lines, as confirmed by a micromagnetic calculation for ferromagnetic nanowires with perpendicular magnetic anisotropy.  相似文献   

6.
Racetrack memory is a novel storage-class memory device in which a series of domain walls (DWs), representing zeros and ones, are shifted to and fro by current pulses along magnetic nanowires. Here we show, by precise measurements of the DW's position using spin-valve nanowires, that these positions take up discrete values. This results from DW relaxation after the end of the current pulse into local energy minima, likely derived from imperfections in the nanowire.  相似文献   

7.
Liu G  Lin YC  Liao L  Liu L  Chen Y  Liu Y  Weiss NO  Zhou H  Huang Y  Duan X 《Nano letters》2012,12(4):1972-1976
We report the synthesis of single crystalline Co(2)Si nanowires and the electrical transport studies of single Co(2)Si nanowire devices at low temperature. The butterfly shaped magnetoresistance shows interesting ferromagnetic features, including negative magnetoresistance, hysteretic switch fields, and stepwise drops in magnetoresistance. The nonsmooth stepwise magnetoresistance response is attributed to magnetic domain wall pinning and depinning motion in the Co(2)Si nanowires probably at crystal or morphology defects. The temperature dependence of the domain wall depinning field is observed and described by a model based on thermally assisted domain wall depinning over a single energy barrier.  相似文献   

8.
In some magnetic devices that have been proposed, the information is transmitted along a magnetic wire of submicrometre width by domain wall (DW) motion. The speed of the device is obviously linked to the DW velocity, and measured values up to 1 km x s(-1) have been reported in moderate fields. Although such velocities were already reached in orthoferrite crystal films with a high anisotropy, the surprise came from their observation in the low-anisotropy permalloy. We have studied, by numerical simulation, the DW propagation in such samples, and observed a very counter-intuitive behaviour. For perfect samples (no edge roughness), the calculated velocity increased with field up to a threshold, beyond which it abruptly decreased--a well-known phenomenon. However, for rough strip edges, the velocity breakdown was found to be suppressed. We explain this phenomenon, and propose that roughness should rather be engineered than avoided when fabricating nanostructures for DW propagation.  相似文献   

9.
We demonstrate magnetic switching between two 360° domain wall vortex states in cobalt nanorings, which are candidate magnetic states for robust and low power magnetoresistive random access memory (MRAM) devices. These 360° domain wall (DW) or 'twisted onion' states can have clockwise or counterclockwise circulation, the two states for data storage. Reliable switching between the states is necessary for any realistic device. We accomplish this switching by applying a circular Oersted field created by passing current through a metal atomic force microscope tip placed at the center of the ring. After initializing in an onion state, we rotate the DWs to one side of the ring by passing a current through the center, and can switch between the two twisted states by reversing the current, causing the DWs to split and meet again on the opposite side of the ring. A larger current will annihilate the DWs and create a perfect vortex state in the rings.  相似文献   

10.
Magnetic domain wall (DW) motion induced by spin transfer torque in magnetic nanowires is of emerging technological interest for its possible applications in spintronic memory or logic devices. Co/Pd multilayered magnetic nanowires with perpendicular magnetic anisotropy were fabricated on the surfaces of Si wafers by ion-beam sputtering. The nanowires had different sized widths and pinning sites formed by an anodic oxidation method via scanning probe microscopy (SPM) with an MFM tip. The magnetic domain structure was changed by an anodic oxidation method. To discover the current-induced DW motion in the Co/Pd nanowires, we employed micromagnetic modeling based on the Landau-Lifschitz-Gilbert (LLG) equation. The split DW motions and configurations due to the edge effects of pinning site and nanowire appeared.  相似文献   

11.
We have studied the influence of moving domain walls (DWs) on the magnetoimpedance of a cobalt-based amorphous microwire. A model describing the DW motion in the electric field of an alternating current in the absence of a skin effect is proposed. When the current amplitude exceeds a certain threshold value, the DW motion leads to the appearance of a second harmonic component in the frequency spectrum of the sample response voltage. The second harmonic amplitude has been studied as a function of the external longitudinal magnetic field, the current frequency, and the angle of deviation of the microwire anisotropy axis from the circular direction. The sensitivity of the second harmonic to the external magnetic field can be significantly higher than that of the first harmonic.  相似文献   

12.
The present paper includes experimental and analytical data on the fracture properties of a nickel-iron superalloy, a ferromagnetic austenite, at 4 K in magnetic fields of 0 and 6 T. The tensile, notch tensile and small punch tests are employed. A finite element analysis is also performed to convert the experimentally measured load-displacement data into useful engineering information. To interpret the results we review the available theory of the influence of magnetic field on the stress intensity factor for a crack in ferromagnetic materials.  相似文献   

13.
This paper studies the stress field and crack nucleation behavior in a disclinated nanowire with a continuum model. The surface stress effects of the nanowire is accounted for with the Gurtin-Murdoch model. The Green’s functions for the stress fields of a single wedge disclination and a single edge dislocation in a cylindrical nanowire are solved respectively with the complex variable method. To make the superposition principle valid, the stress field induced by the residual surface tension is properly handled in the Green’s functions. After that, the distributed dislocation method is applied to simulate the crack nucleation behavior. The influences of the surface stress effects on the stress fields of the wedge disclination and edge dislocation as well as on the Griffith crack nucleation behavior are systematically discussed.  相似文献   

14.
15.
The formation and behavior of domain walls were studied in L-shaped nanowires via micro-magnetic simulation using the Objective Oriented Micro-Magnetic Frame program. We induced three types of domain walls by varying the thickness of the nanowire. A transverse wall, an asymmetric transverse wall, and a vortex wall were induced in 10, 20, and 40 nm-thick nanowires, respectively. The type of domain walls formed was determined by the competition between exchange and magnetostatic energy. The depinning field of the domain wall was the largest for the 20 nm-thick and the smallest for the 10 nm-thick nanowires. Domain wall behaviors were quite different from one another. The transverse wall in the 10 nm-thick nanowire was annihilated without changing its type. In the case of the 40 nm-thick nanowire, the vortex wall was not transformed to another type, but did switch its polarity throughout the depinning process. The wall in the 20 nm-thick nanowire underwent repetitions of the transformation of type and the switching of polarity until annihilation. Our results confirm that the behavior of a domain wall at a corner or a rounded part of nanowires is very complex and it originates from the different spin structures of a domain wall.  相似文献   

16.
Confocal annular Josephson tunnel junctions (CAJTJs), which are the natural generalization of the circular annular Josephson tunnel junctions, have a rich nonlinear phenomenology due to the intrinsic non-uniformity of their planar tunnel barrier delimited by two closely spaced confocal ellipses. In the presence of a uniform magnetic field in the barrier plane, the periodically changing width of the elliptical annulus generates a asymmetric double-well for a Josephson vortex trapped in a long and narrow CAJTJ. The preparation and readout of the vortex pinned in one of the two potential minima, which are important for the possible realization of a vortex qubit, have been numerically and experimentally investigated for CAJTJs with the moderate aspect ratio 2:1. In this work, we focus on the impact of the annulus eccentricity on the properties of the vortex potential profile and study the depinning mechanism of a fluxon in more eccentric samples with aspect ratio 4:1. We also discuss the effects of the temperature-dependent losses as well as the influence of the current and magnetic noise.  相似文献   

17.
The propagation of magnetic domain walls induced by spin-polarized currents has launched new concepts for memory and logic devices. A wave of studies focusing on permalloy (NiFe) nanowires has found evidence for high domain-wall velocities (100 m s(-1); refs,), but has also exposed the drawbacks of this phenomenon for applications. Often the domain-wall displacements are not reproducible, their depinning from a thermally stable position is difficult and the domain-wall structural instability (Walker breakdown) limits the maximum velocity. Here, we show that the combined action of spin-transfer and spin-orbit torques offers a comprehensive solution to these problems. In an ultrathin Co nanowire, integrated in a trilayer with structural inversion asymmetry (SIA), the high spin-torque efficiency facilitates the depinning and leads to high mobility, while the SIA-mediated Rashba field controlling the domain-wall chirality stabilizes the Bloch domain-wall structure. Thus, the high-mobility regime is extended to higher current densities, allowing domain-wall velocities up to 400 m s(-1).  相似文献   

18.
We investigated a technique for proving the pinning behaviors of a domain wall (DW) in spin-valve stripes with artificial configurations, which consist of a nano-wire, a large pad and sharp tip at the ends of the wire, and a circular ring at the center. It was found from the GMR measurement at various positions that a DW was pinned at a ring during DW's propagation from the side of pad to the side of tip. Micromagnetic simulation revealed that the initial onion magnetic states of the ring changes continuously to final reverse onion state via counterclockwise vortex state when a counterclockwise tail-to-tail DW pass through the ring. In addition, the simulation results indicated that the magnetic states at a circular ring were determined by the type and chirality of DW. We also studied the characteristics of domain wall motion in the same configuration, when the nano-ring was replaced with square and diamond structures.  相似文献   

19.
The mechanistic aspects of process of initiation of a mode‐I fatigue crack in an aluminium alloy (AA 2219‐T87) are studied in detail, both computationally as well as experimentally. Simulations are carried out under plane strain conditions with fatigue process zone modelled as stress‐state–dependent cohesive elements along the expected mode‐I failure path. An irreversible damage parameter that accounts for the progressive microstructural damage due to fatigue is employed to degrade cohesive properties. The simulations predict the location of initiation of the fatigue crack to be subsurface where the triaxiality and the opening tensile stresses are higher in comparison with that at the notch surface. Examination of the fracture surface profile of fracture test specimens near notch tip reveals a few types of regions and existence of a mesoscopic length scale that is the distance of the location of highest roughness from the notch root. A discussion is developed on the physical significance of the experimentally observed length scale.  相似文献   

20.
Methods for the manipulation of single magnetic particles have become very interesting, in particular for in vitro biological studies. Most of these studies require an external microscope to provide the operator with feedback for controlling the particle motion, thus preventing the use of magnetic particles in high‐throughput experiments. In this paper, a simple and compact system with integrated electrical feedback is presented, implementing in the very same device both the manipulation and detection of the transit of single particles. The proposed platform is based on zig‐zag shaped magnetic nanostructures, where transverse magnetic domain walls are pinned at the corners and attract magnetic particles in suspension. By applying suitable external magnetic fields, the domain walls move to the nearest corner, thus causing the step by step displacement of the particles along the nanostructure. The very same structure is also employed for detecting the bead transit. Indeed, the presence of the magnetic particle in suspension over the domain wall affects the depinning field required for its displacement. This characteristic field can be monitored through anisotropic magnetoresistance measurements, thus implementing an integrated electrical feedback of the bead transit. In particular, the individual manipulation and detection of single 1‐μm sized beads is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号