首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Precision flight control for a multi-vehicle quadrotor helicopter testbed   总被引:1,自引:0,他引:1  
Quadrotor helicopters continue to grow in popularity for unmanned aerial vehicle applications. However, accurate dynamic models for deriving controllers for moderate to high speeds have been lacking. This work presents theoretical models of quadrotor aerodynamics with non-zero free-stream velocities based on helicopter momentum and blade element theory, validated with static tests and flight data. Controllers are derived using these models and implemented on the Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STARMAC), demonstrating significant improvements over existing methods. The design of the STARMAC platform is described, and flight results are presented demonstrating improved accuracy over commercially available quadrotors.  相似文献   

2.
In this paper, we present a full scheme for the cooperative control of multiple unmanned aerial vehicle (UAV) helicopters. We adopt the leader-follower pattern to maintain a fixed geometrical formation while navigating the UAVs following certain trajectories. More specifically, the leader is commanded to fly on some predefined trajectories, and each follower is controlled to maintain its position in formation using the measurement of its inertial position and the information of the leader position and velocity, obtained through a wireless modem. More specifications are made for multiple UAV formation flight. In order to avoid possible collisions of UAV helicopters in the actual formation flight test, a collision avoidance scheme based on some predefined alert zones and protected zones is employed. Simulations and experimental results are presented to verify our design.  相似文献   

3.
The sea breeze is a low-frequency disturbance that severely damages the stability of small unmanned helicopters operating over the sea, especially for the yaw control, which is highly sensitive to disturbance. General internal model control is an appropriate method for dealing with this kind of operation conditions, whereas conventional internal model control cannot eliminate the tracking errors between a nominal model and a real model. In coping with unknown dynamics and low-frequency gust disturbances for small helicopters, this paper proposes a novel robust controller constructed with system identification and integrator-based improved general internal model. As a refinement of the conventional frame, the proposed control scheme extends the applicable scope of a controlled plant from a priori known dynamic to an unknown dynamic. Furthermore, under the proposed controller, it is guaranteed that the tracking error between the actual model and the nominal model converges to zero asymptotically. Finally, the effectiveness and advantage of the proposed control scheme are verified through comparative practical flight tests.  相似文献   

4.
针对无人直升机模型复杂,控制器难于设计,易受外界干扰等问题,本文在建立亚拓系列直升机动力学模型基础上,提出了一种改进的二阶线性自抗扰控制器。首先,将线性扩张状态观测器用于估计影响输出结果的扰动,并加入跟踪微分器。然后,改进了控制器结构与反馈补偿系数,使直升机姿态角能够更快地响应所输入的指令,并能够按设定的角度飞行,以完成要求的任务;最后,通过引入白噪声干扰模块,来验证本文控制器的抗干扰能力。对比仿真结果表明,本文所提出的控制器对于无人直升机的姿态角有较好的控制效果,优于其他两种控制器。特别是在噪声干扰的条件下,也有较好的动态性能和鲁棒性。  相似文献   

5.
基于网络的飞行传感器仿真系统研究   总被引:2,自引:0,他引:2  
提出了一种基于TCP/IP协议的传感器仿真系统,模拟无人机实际飞行中各类传感器的信导和电气特性,解决了全数字无人机飞行仿真系统中对飞机传感器进行实时仿真的问题。  相似文献   

6.
无人机控制器的设计开发是一项复杂的系统工程, 传统的基于代码编程的开发方式存在开发难度大、周期长及错误率高等缺点. 同时, 强化学习智能飞控算法虽在仿真中取得很好的性能, 但在实际中仍缺乏一套完备的开发系统. 本文提出一套基于模型的智能飞控开发系统, 使用模块化编程及自动代码生成技术, 将强化学习算法应用于飞控的嵌入式开发与部署. 该系统可以实现强化学习算法的训练仿真、测试及硬件部署, 旨在提升以强化学习为代表的智能控制算法的部署速度, 同时降低智能飞行控制系统的开发难度.  相似文献   

7.
刘菊红  袁红艳 《测控技术》2013,32(3):135-137
飞行控制系统仿真平台作为现代飞机设计中的重要工具,适用于飞控系统研制的全阶段,是飞控系统研究与开发的重要设施。在分析飞控系统仿真平台建设的必要性、基本要求以及适用范围的基础上,给出了一种通用型半物理仿真平台的建设方案,最后指出了建设中需要把握的关键技术。  相似文献   

8.
方星  吴爱国  董娜 《控制理论与应用》2015,32(10):1325-1334
针对小型无人直升机在飞行过程中容易受到非匹配扰动影响的特点,本文设计了一种基于新型滑模控制方法的轨迹跟踪控制器.首先,建立了无人直升机系统的非线性数学模型,并对该模型进行近似反馈线性化处理,同时将模型分为位置和偏航两个子系统;然后,利用扩展扰动观测器对复合扰动以及非匹配扰动的各阶导数的估计值,设计新型时变滑模面,得到滑模控制律,并给出了控制系统的稳定性分析;最后,仿真结果验证了控制方法的有效性和优越性.该新型滑模控制方法的优越性主要体现在:对非匹配扰动具有较强的鲁棒性,以及能有效地抑制抖振现象.  相似文献   

9.
提出了一种基于工业控制计算机开发的某型无人机飞行控制系统模拟器设计;详细介绍了系统设计原理,给出了硬件构成方案、软件功能模块组成和程序流程图,最后分析了测试结果;该模拟器充分利用了当前计算机技术、自动控制技术、系统实时仿真技术和面向对象编程技术,具有功能强大、界面友好、操作灵活的特点。可用于无人机系统先期设计验证或后期测试维护;实际使用情况表明该系统性能良好,完全能够代替真实飞行控制系统进行实时仿真试验。  相似文献   

10.
A flight control system for aerial robots: algorithms and experiments   总被引:7,自引:0,他引:7  
This paper presents a hierarchical flight control system for unmanned aerial vehicles. The proposed system executes high-level mission objectives by progressively substantiating them into machine-level commands. The acquired information from various sensors is propagated back to the higher layers for reactive decision making. Each vehicle is connected via standardized wireless communication protocol for scalable multi-agent coordination. The proposed system has been successfully implemented on a number of small helicopters and validated in various applications. Results from waypoint navigation, a probabilistic pursuit-evasion game and vision-based target tracking demonstrate the potential of the proposed approach toward intelligent flying robots.  相似文献   

11.
Robust attitude control problem for small-scale unmanned helicopters is investigated to improve attitude control performances of roll and pitch channels under both small and large amplitude manoeuvre flight conditions. The model of the roll or pitch angular dynamics is regarded as a nominal single-input single-output linear system with equivalent disturbances which contain nonlinear uncertainties, coupling-effects, parameter perturbations, and external disturbances. Based on the signal compensation method, a robust controller is designed with two parts: a proportional-derivative controller and a robust compensator. The designed controller is linear and time-invariant, so it can be easily realised. The robust properties of the closed-loop system are proven. According to the ADS-33E-PRF military rotorcraft standard, the controller can achieve top control performances. Experimental results demonstrate the effectiveness of the proposed control strategy.  相似文献   

12.
无人直升机在实际飞行过程中,会受到阵风等外界因素的干扰,并且模型不确定性也会对控制效果带来不利影响.为应对这些挑战,本文设计了一种基于扩张状态观测器的自抗扰反步控制器.首先,建立了无人直升机姿态动力学模型.随后,引入扩张状态观测器,用以实时观测由外界扰动和模型不确定性组成的总和扰动.观测得到的总和扰动估计值与基于Lyapunov函数的反步法控制器控制算法相结合,用以消除总和扰动的影响,使得无人直升机在各种飞行条件下均能对运动指令进行快速和准确的跟踪.最后,仿真研究和飞行实验验证了该控制律的有效性.与同等条件下的PID控制器相比,该控制律表现出更优的飞行性能.  相似文献   

13.
The consideration of safety issues in the operation of helicopters involves the capability to perform emergency descending maneuvers through the autorotation principle when the engine is no longer supplying power. When comparing manned and unmanned helicopters, the lower rotor inertia of UAV configurations makes this functionality even more challenging for the pilot since more accurate timing and speed control of the flare phase are required. This paper presents a complete set of guidelines to design a controller for the autonomous autorotation landing of an UAV. This analysis is based on experimental data that corresponds to autorotation landings of a small-size helicopter carried out by a skillful pilot.  相似文献   

14.
Multi-UAV Simulator Utilizing X-Plane   总被引:1,自引:0,他引:1  
This paper describes the development of a simulator for multiple Unmanned Aerial Vehicles (UAVs) utilizing the commercially available simulator X-Plane and Matlab. Coordinated control of unmanned systems is currently being researched for a wide range of applications, including search and rescue, convoy protection, and building clearing to name a few. Although coordination and control of Unmanned Ground Vehicles (UGVs) has been a heavily researched area, the extension towards controlling multiple UAVs has seen minimal attention. This lack of development is due to numerous issues including the difficulty in realistically modeling and simulating multiple UAVs. This work attempts to overcome these limitations by creating an environment that can simultaneously simulate multiple air vehicles as well as provide state data and control input for the individual vehicles using a heavily developed and commercially available flight simulator (X-Plane). This framework will allow researchers to study multi-UAV control algorithms using realistic unmanned and manned aircraft models in real-world modeled environments. Validation of the system’s ability is shown through the demonstration of formation control algorithms implemented on four UAV helicopters with formation and navigation controllers built in Matlab/Simulink.  相似文献   

15.
基于开放平台和神经网络的自主飞行控制系统研究   总被引:1,自引:0,他引:1  
王辉  徐锦法  高正 《信息与控制》2005,34(2):240-244
开发了飞行控制软件的应用中间件,实现控制结构的动态变化和控制组件的动态重构. 基于模型逆技术,设计了某状态下的旋转逆和平移逆控制器,其它状态下的逆误差由在线神经网络补偿.实例仿真的结果表明:开放平台和神经网络的结合,能够很好地实现无人直升机的自主飞行,具有较大的理论意义和工程应用价值.  相似文献   

16.
无人直升机在悬停/小速度飞行阶段具有特殊的物理特性,给控制系统的设计带来了诸多技术难题;针对无人直升机悬停/小速度段位置控制的需求,提出了一种基于"姿态角阻尼内回路"的位置控制结构,该控制结构采用内回路姿态角阻尼增稳,外回路位置控制的控制方式;并且针对增稳回路自适应性、抗风补偿和位置控制精度等问题,分别采用前馈自动配平机制与非线性PID控制方法对常规控制律进行改进;仿真验证表明,所提出的控制策略和控制律设计结果达到了较好的控制效果。  相似文献   

17.
Tail‐sitter unmanned aerial vehicles (UAVs) can flight as rotorcrafts as well as fixed‐wing aircrafts, but it is hard to control the flight mode transition. The vehicle dynamics involves serious parametric uncertainties, highly nonlinear dynamics, and is easy to be affected by external disturbances, especially during the mode transition. This paper presents a robust control method for a kind of tail‐sitter UAVs to achieve the flight mode transition. The robust controller is proposed based on the state‐feedback control scheme and the robust compensation method. The proposed control method does not need to switch the coordinate system, the controller structure, or the controller parameters during the mode transitions. Theoretical analysis is given to guarantee the robustness stability of the designed flight control system. Numerical simulation results are presented to show the advantages of the proposed control method compared with the state‐feedback control method and the sliding mode control approach.  相似文献   

18.
In this paper, we apply a so‐called robust and perfect tracking (RPT) control technique to the design and implementation of the flight control system of a miniature unmanned rotorcraft, named HeLion. To make the presented work self‐contained, we will first outline some background knowledge, including mainly the nonlinear flight dynamics model and the inner‐loop flight control system design. Next, the highlight of this paper, that is, the outer‐loop flight control system design procedure using RPT control technique, will be detailed. Generally speaking, RPT control technique aims to design a controller such that (i) the resulting closed‐loop system is asymptotically stable, and (ii) the controlled output almost perfectly tracks a given reference signal in the presence of any initial conditions and external disturbances. Since it makes use of all possible information including the system measurement output and the command reference signal together with all its derivatives (if available) for control, RPT control technique is particularly useful for the outer‐loop layer of an unmanned aircraft. Both simulation and flight‐test results will be presented and analyzed at the end of this paper, and the efficiency of the RPT control approach will be evaluated comprehensively.  相似文献   

19.
本文通过数学建模进行动力学系统分析,研究实现了基于硬件和软件的四旋翼无人机飞控系统。首先、构建了四旋翼无人机动力学模型并进行理论分析;其次、设计了无人机机架,对各组成模块进行测试、分析和试验;再次、通过集成软硬件实现了无人机飞控系统并进行飞行测试;最后、实验结果表明,实现的无人机飞控系统取得了较好的飞控效果,具有灵敏性强、稳定性高,总体性能优良等优点。  相似文献   

20.
One of the challenges for manned-unmanned air vehicles flying in joint airspace is the need to develop customized but scalable algorithms and hardware that will allow safe and efficient operations. In this work, we present the design of a bus-backboned UAV microavionics system and the hardware-in-the-loop integration of this unit within a joint flight network simulator. The microavionics system is structured around the Controller Area Network and Ethernet bus data backbone. The system is designed to be cross-compatible across our experimental mini-helicopters, aircrafts and ground vehicles, and it is tailored to allow autonomous navigation and control for a variety of different research test cases. The expandable architecture allows not only scalability, but also flexibility to test manned-unmanned fleet cooperative algorithm designs at both hardware and software layer deployed on bus integrated flight management computers. The flight simulator is used for joint simulation of virtual manned and unmanned vehicles within a common airspace. This allows extensive hardware-in-the-loop testing capability of customized devices and algorithms in realistic test cases that require manned and unmanned vehicle coordinated flight trajectory planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号