首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical Durability of Silicon Oxycarbide Glasses   总被引:2,自引:0,他引:2  
Silicon oxycarbide (SiOC) glasses with controlled amounts of Si—C bonds and free carbon have been produced via the pyrolysis of suitable preceramic networks. Their chemical durability in alkaline and hydrofluoric solutions has been studied and related to the network structure and microstructure of the glasses. SiOC glasses, because of the character of the Si—C bonds, exhibit greater chemical durability in both environments, compared with silica glass. Microphase separation into silicon carbide (SiC), silica (SiO2), and carbon, which usually occurs in this system at pyrolysis temperatures of >1000°–1200°C, exerts great influence on the durability of these glasses. The chemical durability decreases as the amount of phase separation increases, because the silica/silicate species (without any carbon substituents) are interconnected and can be easily leached out, in comparison with the SiOC phase, which is resistant to attack by OH or F ions.  相似文献   

2.
Interfaces of silicon carbide-whisker-reinforced alumina (SiC( w )/Al2O3) composites were examined using high-resolution electron microscopy (HREM). HREM specimens were prepared from the bulk of samples that were previously tested for fracture toughness at 25°, 1000°, 1200°, or 1400°C, in ambient air. The test temperature history served as an independent variable. It was found that the as-received material did not possess a distinct interfacial layer and that the test temperature history (which included a 30°C/min heating and cooling rate, a 30-min soak prior to specimen loading, and a typical test duration of 5–10 min) did not appreciably change the interface thickness at any of the elevated test temperatures.  相似文献   

3.
SiCO glasses prepared from sol–gel precursors via pyrolysis in argon at temperatures ranging from 1000° to 1400°C were studied by transmission electron microscopy (TEM), in conjunction with electron energy-loss spectroscopy (EELS). EELS analysis showed that stoichiometric SiCO glass underwent phase separation, forming SiO2- and SiC-based environments. This process started at ∼1200°C. However, at temperatures >1300°C, precipitation of nanometer-sized SiC particles embedded in vitreous SiO2 was monitored by high-resolution TEM.  相似文献   

4.
Aluminum nitride (AlN)–silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g−1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich phases. The formation of homogeneous solid solution proceeded with increasing nitridation temperature from 1400° up to 1500°C. The specific surface area of the AlN–SiC powder nitrided at 1500°C for 3 h was 19.5 m2·g−1, whereas the primary particle size (assuming spherical particles) was estimated to be ∼100 nm.  相似文献   

5.
Inhibition of cubic-rhombohedral phase transformation and low-temperature sintering at 1000°C were achieved for 10-mol%-Sc2O3-doped cubic-ZrO2 by the presence of 1 mol% Bi2O3. The powders of 1-mol%-Bi2O3–10-mol%-Sc2O3-doped ZrO2 were prepared using a hydrolysis and homogeneous precipitation technique. No trace of rhombohedral-ZrO2 phase could be detected, even after sintering at 1000°–1400°C. The average grain size of the ZrO2 sintered at 1200°C was >2 μm because of grain growth in the presence of Bi3+. Cubic, stabilized Bi-Sc-doped ZrO2 sintered at 1200°C had sufficient conductivity at 1000°C (0.33 S/cm) to be used as an electrolyte for a solid-oxide fuel cell (SOFC) and at 800°C (0.12 S/cm) for an intermediate-temperature SOFC.  相似文献   

6.
Calcium hexa-aluminate (CaO·6Al2O3) has been prepared from calcium nitrate and aluminum sulfate solutions in the temperature range of 1000°–1400°C. A 0.3 mol/L solution of aluminum sulfate was prepared, and calcium nitrate was dissolved in it in a ratio that produced 6 mol of Al2(SO4)3·16H2O for each mole of Ca(NO3)2·4H2O. It was dried over a hot magnetic stirrer at ∼70°C and fired at 1000°–1400°C for 30–360 min. The phases formed were determined by XRD. It was observed that CaO·Al2O3 and CaO·2Al2O3 were also formed as reaction intermediates in the reaction mix of CaO·6Al2O3. The kinetics of the formation of CaO·6Al2O3 have been studied using the phase-boundary-controlled equation 1 − (1 − x )1/3= K log t and the Arrhenius plot. The activation energy for the low-temperature synthesis of CaO·6Al2O3 was 40 kJ/mol.  相似文献   

7.
Copper phosphate glasses with 40, 50, and 60 mol% CuO in batch were melted in air at 1000°, 1100°, and 1200°C using quartz or alumina crucibles, and the [Cu2+]/[Cutotal] ratio variations with melting time were measured. Glasses were oxidized during melting and reached equilibrium [Cu2+]/[Cutotal] ratios which were independent of melting temperature and identical for the 40 and 50 mol% CuO content glasses. Structural considerations seemed to have determined oxidation-reduction equilibrium rather than an equilibrium redox reaction. Also, the effects of crucible type on the oxidation-reduction balance were examined. It was found that a quartz crucible is more inert and has less effect on the oxidation-reduction equilibrium of glass than an alumina crucible. Crucible contamination and phosphorus vaporization were found to diminish as the CuO content in the batch was increased.  相似文献   

8.
A composite consisting of 30 wt% SiC whiskers and a mullite-based matrix (mullite–32.4 wt% ZrO2–2.2 wt% MgO) was isothermally exposed in air at 1000°–1350°C, for up to 1000 h. Microstructural evolution in the oxidized samples was investigated using X-ray diffractometry and analytical transmission electron microscopy. Amorphous SiO2, formed through the oxidation of SiC whiskers, was devitrified into cristobalite at T ≥ 1200°C and into quartz at 1000°C. At T ≥ 1200°C, the reaction between ZrO2 and SiO2 resulted in zircon, and prismatic secondary mullite grains were formed via a solution–reprecipitation mechanism in severely oxidized regions. Ternary compounds, such as sapphirine and cordierite, also were found after long-term exposure at T ≥ 1200°C.  相似文献   

9.
The effect of Si3N4, Ta5Si3, and TaSi2 additions on the oxidation behavior of ZrB2 was characterized at 1200°–1500°C and compared with both ZrB2 and ZrB2/SiC. Significantly improved oxidation resistance of all Si-containing compositions relative to ZrB2 was a result of the formation of a protective layer of borosilicate glass during exposure to the oxidizing environment. Oxidation resistance of the Si3N4-modified ceramics increased with increasing Si3N4 content and was further improved by the addition of Cr and Ta diborides. Chromium and tantalum oxides induced phase separation in the borosilicate glass, which lead to an increase in liquidus temperature and viscosity and to a decrease in oxygen diffusivity and of boria evaporation from the glass. All tantalum silicide-containing compositions demonstrated phase separation in the borosilicate glass and higher oxidation resistance than pure ZrB2, with the effect increasing with temperature. The most oxidation-resistant ceramics contained 15 vol% Ta5Si3, 30 vol% TaSi2, 35 vol% Si3N4, or 20 vol% Si3N4 with 10 mol% CrB2. These materials exceeded the oxidation resistance of the ZrB2/SiC ceramics below 1300°–1400°C. However, the ZrB2/SiC ceramics showed slightly superior oxidation resistance at 1500°C.  相似文献   

10.
The compositions of anion-deficient zirconia and thoria in equilibrium with O2 were measured from 1 to 10−6 atm and 1400° to 1900°C; for ZrO2- x (po2 in atm, and T in °K), log x∼−0.890-[(0.400×104)/ T ]-[(log p )/6]; for ThO2- x , log x∼−1.870-[(0.340×104)/ T ]-[(log p )/6]. The ZrO2- x -Zr boundary was located at x=0.014 at 1800°C; thoria was single-phase over the entire range. Consistent results were obtained when O2/inert gas mixtures were used, but use of H2/H2O and CO/CO2 at 1000° to 1200°C gave abnormal and, in the latter case, erratic data; side reactions in these atmospheres are inferred. The monoclinic-tetragonal phase change of ZrO2 and the lattice thermal expansion, room-temperature Young's modulus, and strength properties of ZrO2 and ThO2 bodies were not appreciably altered by oxygen deficiency. The lattice dimensions decreased slightly with departure from stoichiometry.  相似文献   

11.
The modified static loading technique for estimating static fatigue limits was used to study the effects of oxidation and temperature on the static fatigue limit, K 10 for crack growth in sintered silicon carbide. For as-machined, unoxidized sintered silicon carbide with a static load time of 4 h, K 10× 2.25 MPa * m1/2 at 1200° and ∼1.75 at 1400°C. On oxidation for 10 h at 1200°C, K 10 drops to ∼1.75 MPam1/2 at 1200° and ∼1.25 at 1400°C when tested in a nonoxidizing ambient. Similar results were obtained at 1200°C for tests performed in air. A tendency for strengthening below the static fatigue limit appears to result from plastic relaxation of stress in the crack-tip region by viscous deformation involving an oxide grain-boundary phase for oxidized material and, possibly, diffusive creep deformation in the case of unoxidized material.  相似文献   

12.
Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200–1400°C for times between 96 and 500 h at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate-limiting kinetic mechanisms are discussed. Passive oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants that are also found in combustion environments, oxygen and water vapor.  相似文献   

13.
Measurements of threshold stress intensities for crack growth, K h, of three polycrystalline SiC materials were attempted using interrupted static fatigue tests at 1200°–1400°C. Weibull statistics were used to calculate conservative Kth values from test results. The K th of a chemically vapor deposited β-SiC could not be determined, as a result of its wide variations in strength. The Kth ≥ 3.3,2.2, and 1.7 MPa·m1/2 for an Al-doped sintered α-SiC; and Kth ≥ 3.1, 2.7, and 2.2 MPa·m1/2 for a hot isostatically pressed α-SiC, both at 1200°, 1300°, and 1400°C, respectively. A damage process concurrent with subcritical crack growth was apparent for the sintered SiC at 1400°C. The larger Kth 's for the HIPed SiC (compared to the sintered SiC) may be a result of enhanced viscous stress relaxation caused by the higher silica content and smaller grain size of this material. Values measured at 1300° and 1400°C were in good agreement with the Kth's predicted by a diffusive crack growth model, while the measured Kth 's were greater than the predicted ones at 1200°C.  相似文献   

14.
The monolithic glass-forming region of the low phonon and low softening point antimony glasses containing high Sb2O3 (40–75 mol%) in the novel quaternary K2O–B2O3–Sb2O3–ZnO system has been found with the help of X-ray diffraction (XRD) analysis. The structure of a series of glasses with the general composition of (mol%) 15K2O–15B2O3–(70− x )Sb2O3– x ZnO (where x =5–25) has been evaluated by infrared reflection spectral (FT-IRRS) analyses. All the glasses are found to possess a low phonon energy of around 600 cm−1, as revealed by FT-IRRS. Their softening point ( T s), glass transition temperature ( T g), and coefficient of thermal expansion (CTE) have been found to vary in the ranges of 351°–379°C, 252°–273°C, and 195–218 × 10−7 K−1, respectively. These properties are found to be controlled by their fundamental property, like the covalent character of the glasses, which is found to increase with an increase in Sb2O3 content. In addition, the devitrified glasses have been characterized by XRD and field emission scanning electron microscopy, which manifests the presence of nanozinc antimony oxide crystals with sizes of 21–43 nm. The exhibited properties have revealed that they are a new class of versatile materials.  相似文献   

15.
The electrical conductivity and ion/electron transference numbers in Al3O3 were determined in a sample configuration designed to eliminate influences of surface and gas-phase conduction on the bulk behavior. With decreasing O2 partial pressure over single-crystal Al2O3 at 1000° to 1650°C, the conductivity decreased, then remained constant, and finally increased when strongly reducing atmospheres were attained. The intermediate flat region became dominant at the lower temperatures. The emf measurements showed predominantly ionic conduction in the flat region; the electronic conduction state is exhibited in the branches of both ends. In pure O2 (1 atm) the conductivity above 1400°C was σ≃3×103 exp (–80 kcal/ RT ) Ω−1 cm−1, which corresponds to electronic conductivity. Below 1400°C, the activation energy was <57 kcal, corresponding to an extrinsic ionic condition. Polycrystalline samples of both undoped hot-pressed Al2O3 and MgO-doped Al2O3 showed significantly higher conductivity because of additional electronic conduction in the grain boundaries. The gas-phase conduction above 1200°C increased drastically with decreasing O2 partial pressure (below 10−10 atm).  相似文献   

16.
Reduction-oxidation reactions and enhanced wetting or spreading of Na2FexSi2O5+x, and Na2NixSi2O5+x glasses on substrates of Fe, Co, Ni, Ni-Fe, and Ni-Co were observed at 1000°C at low partial pressures of O2 and Na as the O/Si ratio of the glass increased. When the substrate had a higher oxidation potential than the metal of one of the cations in the glass, e.g. CoO-containing glass on Fe, metallic precipitates formed by redox reactions under all conditions. A redox reaction based on reduction of the valence of a cation in the glass, e.g. Fe3+ to Fe2+, also occurred. Adherence developed between substrates and glasses containing amounts of substrate oxide, either in the starting composition or formed by redox reactions, approaching saturation.  相似文献   

17.
The reactions between hot-pressed calcium hexaluminate (CaAl12O19, hibonite) and silicon carbide (SiC) at 1100°-1400°C in air and nominal argon atmospheres were investigated. In inert atmospheres, there was no evidence of reaction at temperatures up to at least 1400°C. In air, the oxidation of SiC produced a layer of silica or a multicomponent amorphous silicate (depending on impurities) that reacted with CaAl12O19. At temperatures below 1300°C, the reaction resulted in the stratification of two distinct interfacial layers: a partially devitrified CaO-Al2O3-SiO2 glass adjacent to SiC and a CaAl2Si2O8 (anorthite) layer adjacent to hibonite. At 1400°C, a large amount of liquid was formed, the majority of which was squeezed out from between the reaction couple. No distinct layer of anorthite was present; instead, the anorthite was replaced by a layer of alumina between the glass-rich layer and hibonite. An activation energy of 290 kJ/mol was determined for the reaction, which is consistant with oxygen diffusion through a calcium aluminosilicate glass. The reaction between rare-earth hexaluminates and SiO2 was predicted to produce a more-viscous glass than CaAl12O19 and SiO2 and, therefore, have slower reaction kinetics, because of lower mass transport in the glass.  相似文献   

18.
Silicon carbide whiskers were synthesized in situ by direct carbothermal reduction of silicon nitride with graphite in an argon atmosphere. Phase evolution study reveals that the formation of β-SiC was initiated at 1400° to 1450°C; above 1650°C silicon was formed when carbon was deficient. Nevertheless, Si3N4 could be completely converted to SiC with molar ratio Si3N4:C = 1:3 at 1650°C. The morphology of the SiC whiskers is needlelike, with lengths and diameters changing with temperature. SiC fibers were produced on the surface of the sample fired at 1550°C with an average diameter of 0.3 μm. No catalyst was used in the syntheses, which minimizes the amount of impurities in the final products. A reaction mechanism involving the decomposition of silicon nitride has been proposed.  相似文献   

19.
The sintering properties and microstructure of La1− x A x NbO4 powders ( x =0, 0.005, and 0.02 and A=Ca, Sr, and Ba), prepared by spray pyrolysis have been investigated. Dense materials (>97%) were obtained by conventional sintering at 1200°C and by hot pressing (25 MPa) at 1050°C, respectively. Homogeneous materials were obtained and the average grain size obtained by the two densification methods was ∼2.0 and ∼0.4 μm, respectively, for the 2% doped materials. Pure lanthanum ortho-niobate (LaNbO4) showed a higher degree of grain growth. In the acceptor-doped materials, secondary phases were observed to inhibit grain growth at 1200°C. At 1400°C or higher, molten secondary phases in the Ba-doped materials resulted in severe grain growth, causing microcracking during cooling due to crystallographic anisotropy. A low solubility of AO (A=Ca, Sr, and Ba) in LaNbO4 is inferred from the presence of secondary phases, and 1 mol% solubility of SrO in LaNbO4 was found by electron microprobe analysis. The electrical conductivity in wet hydrogen of the materials demonstrated that the main charge carrier was protons up to 1000°C and reached a maximum value of ∼8·10−4 S/cm at 900°C.  相似文献   

20.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号