首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
超高性能混凝土立方体抗压强度尺寸效应   总被引:4,自引:0,他引:4  
苏捷  刘伟  史才军  方志 《硅酸盐学报》2021,49(2):305-311
通过5种几何尺寸、3个强度等级和4种钢纤维掺量的超高性能混凝土(UHPC)立方体试件的抗压试验,研究了强度等级和钢纤维体积掺量等对UHPC立方体抗压强度及尺寸效应的影响,结果表明:UHPC立方体试件抗压强度的尺寸效应随强度等级的增加而趋于明显,R160级UHPC基体抗压强度尺寸效应度约为R120级UHPC基体的1.72...  相似文献   

2.
Strength Analysis of Yttria-Stabilized Tetragonal Zirconia Polycrystals   总被引:2,自引:0,他引:2  
Tensile strength of Y2O3-stabilized ZrO2 polycrystals (Y-TZP) was measured by a newly developed tensile testing method with a rectangular bar. The tensile strength of Y-TZP was lower than that of the three-point bend strength, and the shape of the tensile strength distribution was quite different from that of the three-point bend strength distribution. It was difficult to predict the distribution curve of the tensile strength using the data of the three-point bend strength by one-modal Weibull distribution. The distribution of the tensile strength was analyzed by two- or three-model Weibull distribution coupled with an analysis of fracture origins. The distribution curve of the three-point bend strength which was estimated by multimodal Weibull distribution agreed favorably with that of the measured three-point bend strength values. A two-modal Weibull distribution function was formulated approximately from the distributions of the tensile and three-point bend strengths, and the estimated two-modal Weibull distribution function for the four-point bend strength agreed well with the measured four-point bend strength.  相似文献   

3.
Measuring the fiber lengths of the broken pieces and estimating the mean tensile strength from the length just before the final fragment length in tension, efforts were made to estimate the axial compressive strengths of carbon fibers when the tensile strength varies with the length. The estimated compressive strength of carbon fibers decreases with increasing temperature. This decrease in compressive strength may be accounted for by a decrease in the radial compressive force owing to a decrease in the residual thermal stress and a decrease in Young's modulus of the resin matrix. There is a linear relationship between the estimated compressive strength and radial compressing force in the temperature range from room temperature to 80°C. The real compressive strength of the fibers, determined by extrapolating this straight line until the radial compressing force is zero, is about 20% higher than the compressive strength estimated by assuming that the tensile strength is uniform. It is approximately 10–50% of tensile strength. A linear relationship between the fiber axial compressive strength and compressive strength of the unidirectional composites is found. The experimental values agree with the values calculated by the rule of mixtures.  相似文献   

4.
早期强度发展缓慢的问题限制了聚羧酸减水剂的应用.为提高混凝土的早期强度,以OX-M4000、丙烯酸为主要原料,在氧化还原引发剂体系的作用下,采用水溶液自由基共聚合的方法,制得了早强型聚羧酸减水剂.通过XRD、SEM和水化热等测试方法,研究了自制早强型聚羧酸减水剂的性能.实验结果表明:自制早强型聚羧酸减水剂具有显著的早强效果:1 d强度提高17%,3 d强度提高14%,7 d强度提高25%,可以应用于管片、预制构件、管桩等对早期强度有要求的高品质混凝土的生产中,提高模具和场地的周转率,提高经济效益,具有广阔的市场前景.  相似文献   

5.
This article examines the effects of melt temperature and hold pressure on the static tensile and fatigue behavior of an injection‐molded 40 wt% talc‐filled polypropylene. Injection molding caused anisotropy in the material. Both yield strength and fatigue strength were higher in the flow direction. The presence of weld line caused a large reduction in yield strength and fatigue strength. For specimens in the flow direction, both yield strength and fatigue strength increased with increasing hold pressure, but they were relatively insensitive to melt temperature. For specimens normal to the flow direction, both yield strength and fatigue strength increased with increasing hold pressure and decreased with increasing melt temperature. For specimens containing a weld line, the yield strength and fatigue strength increased with increasing hold pressure as well as increasing melt temperature. The observed differences in properties are explained in terms of the skin‐core morphology, which was influenced by both melt temperature and hold pressure. POLYM. ENG. SCI., 45:755–763, 2005. © 2005 Society of Plastics Engineers  相似文献   

6.
A variable–temperature ion–exchange process was developed to produce strengthened glasses with decreased strength variability. By introducing a high–temperature step into the normal ion–exchange process, the strength variability was greatly decreased (∼60%) with only about 10% loss in the average strength. The surface damage resistance was also studied using indentation strength tests, and, again, there was a significant improvement compared with the traditional ion–exchange (isothermal) process. Stress profiles in isothermal and variable–temperature ion–exchanged glasses were measured using an optical method. The strength and strength variability of ion–exchanged glass predicted from the measured stress profiles agreed with the experimental strength data.  相似文献   

7.
Polymer-impregnated concrete (PIC) is recognized as a superior construction material with higher durability and strength than plain concrete. The increase in strength has been thought to be a result of an increase in bond strength between mortar and aggregate phases and a reduction of the porosity of the mortar. However, there has been no direct evidence to support that an enhanced mortar-aggregate bond is achieved. In this study, modified briquet tension specimens were tested to determine effects of polymer-impregnation on tensile bond strength, and prismatic specimens with inclined aggregates were tested to determine effects on compression-shear bond strength. Plain mortar briquets were also tested. Results indicate that polymer impregnation does not significantly improve interface bond strength in PIC. However, mortar tensile strength is increased. A review of the failure process (microcracking) in plain concrete is presented. It is proposed that if the same microcracking process occurs in PIC, then high compressive strength is a result of high mortar tensile strength.  相似文献   

8.
聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能研究   总被引:3,自引:0,他引:3  
采用同步法合成了聚氨酯/环氧树脂互穿网络聚合物(PU/EP IPN)硬质泡沫,对机械性能进行了研究。结果表明,与纯聚氨酯硬质泡沫相比,PU/EP IPN硬质泡沫的压缩强度和弯曲强度明显提高,在PU/EP IPN硬质泡沫中,随环氧树脂含量增加,PU/EP IPN硬质泡沫压缩强度和弯曲强度随之增大,当E-39D质量分数增加到24.2%时,PU/EP IPN硬质泡沫压缩强度和弯曲强度出现最大值;PU/EP IPN硬质泡沫机械强度随材料密度的增大而增加;随着环氧树脂中环氧值的增加,PU/EP IPN硬质泡沫的压缩强度、弯曲强度和拉伸强度均呈逐渐升高的趋势。  相似文献   

9.
Reinforcement can improve the modulus, heat distortion temperature and thermal expansion coefficient of rubber modified polypropylene. These improvements canbe obtained with a minimum sacrifice in resin ductility and impact toughness. Our studies have shown that reinforcement with small discontinuous fibers can provide a material with a good balance of stiffness and impact strength. The combination of small potassium titanate fiber reinforcement, polypropylene homopolymer and an impact modifier can produce a material with a tensile modulus of 470,000 psi, a notched Izod impact strength of 4.6 ft-lb/in. and a Gardner imact strength of 320 in-lb. Glass fiber reinforcement produces similar improvements in stiffness and retains Izod impact strength but drastically reduces Gardner impact strength. Polypropylene resin viscosity has a profound effect on composite impact strength. Transmission electron microscopy showed that a correlation exists between EPDM rubber particle size and impact strength: as rubber particle size is reduced, impact strength is increased. A 5 melt flow rate polypropylene was found to have the viscosity required to adequately shear and disperse the impact modifier. The paper describes an approach to broadening the utility of polypropylene homopolymers. The properties and flow of these materials compare very favorably with medium impact ABS.  相似文献   

10.
The effect of glass-resin interface strength on the impact energy of glass fabric (style 181) reinforced epoxy and polyester laminates has been determined. The interface strength was altered by surface treatment of the fabrics with silane coupling agents and with a silicone fluid mold release and the interlaminar shear strength was determined as a means to evaluate the interface strength. An instrumented Charpy impact test was used on unnotehed specimens and thus both initiation and propagation energies could be determined as well as dynamic strength. It was found that the initiation energy for both polyester and epoxy laminates increased with increasing interlaminar shear strength, The propagation energy and thus the total energy for polyester laminates displays a minimum at a critical value of interlaminar shear strength (ILSS). Below this critical value, the total impact energy increases with decreasing shear strength and the dominant energy absorption mode appears to be delamination. Above the critical value, the impact energy increases with increasing values of ILSS and the fracture mode is predominantly one of fiber failure. In all cases, even with mold release applied, the shear strength of epoxy laminates was above this critical value and-thus the total impact energy increases with Increasing values of ILSS. The maximum energy absorbed for the epoxy laminate and the polyester laminate is nearly identical. However, the maximum for the epoxy laminate occurs when the shear strength is maximized while for the polyester laminate the shear strength must be minimized. For the polyester laminate when delamination is predominant, it was found that the glass surface treatment affects the amount of delamination as opposed to the specific value of delamination fracture work.  相似文献   

11.
使用内蒙古乌兰布和沙漠砂完全代替微石英砂配置了高延性水泥基复合材料(ECC),并以砂胶比为变量,对其抗压强度、抗拉强度、抗剪强度以及抗弯强度四个方面的力学性能展开了全面的研究。抗拉试验后进一步对纤维断面使用扫描电镜(SEM)进行了观测,并采用X射线衍射分析(XRD)方法研究了沙漠砂的物质组成。结果表明,以沙漠砂配置的ECC,在相同骨料含量的条件下,其抗压强度、抗拉强度、抗剪强度以及抗弯强度均与微石英砂配置的ECC接近,延性约为微石英砂ECC的一半。除抗剪强度外,沙漠砂ECC其他各项性能均随砂胶比增大而提高,优化配比设计的沙漠砂ECC延性能够达到微石英砂ECC的水平。  相似文献   

12.
Effect of fillers on tack and green strength of blends of EPDM and bromobutyl rubbers has been studied. The fillers used are carbon black and china clay. Test temperature and mode of mixing are varied. Tack increases with the addition of carbon black and china clay. The highest value of tack strength is achieved when the loading of filler is 50% in each phase or all in EPDM phase. The tack strength of filled blends decreases with an increase of test temperature. Tack index, a ratio of tack strength divided by cohesive strength measured under the same geometry, also decreases with test temperature. It has been found that tack strength (Ga) of filled blends is proportional to the contact time (t) and varies as t1/2 or t1/4. Green strength of carbon black filled mixes is much higher than that of china clay filled mixes. The green strength falls with a rise of temperature in both cases. Green strength of carbon black filled mixes increases with the increase of bromobutyl content in the mix. China clay mixes show a reverse trend.  相似文献   

13.
In discontinuous fiber-reinforced composites, the shear strength at the fiber–matrix interface plays an important role in determining the reinforcing effect. In this paper, a method was devised to accurately determine this shear strength, taking the strength distribution of glass fiber into consideration. Calculated strength values based on the shear strenght obtained by the method were in better agreement with the experimental observations than those calculated by employing the shear strength obtained on the assumption that the fiber strength was uniform. The tensile strength of composites increases with increasing aspect ratio of the reinforcing fibers. This trend is almost the same regardless of the kind of matrix, the nature of interfacial treatment, and the environmental temperature. When composites are reinforced with random-planar orientation of short glass fibers of 1.5 times the mean critical fiber length, the tensile strength of composite reaches about 90% of the theoretical strength of composites reinforced with continuous glass fiber. Reinforcing with glass fibers 5 times the critical length, the tensile strength reaches about 97% of theoretical. However, from a practical point of view, it is adequate to reinforce with short fibers of 1.5–2.0 times the mean critical fiber lenght.  相似文献   

14.
This is an experimental study of the tensile strength of solid bridges between primary particles comprising granules of lactose or mannitol. We report on two systems: granules prepared with ethanol granulating solutions, in which the base powders were at most sparingly soluble, and aqueous granulating solutions, in which the base powder solubility was large. Both systems were studied with and without hydroxypropylcellulose (HPC) or polyvinylpyrrolidone (PVP) or surfactants (Triton-X100, sodium lauryl sulfate or polysorbate 80) added to the granulating solution. The interparticle bridge strength was determined from the granule crush strength with a simple model that assumes that solid bridges form by evaporation of solvent from liquid bridges that maintain their shape during drying.Lactose granules prepared with pure ethanol are very weak, with crush strength comparable to that predicted by JKR theory, consistent with its negligible solubility. Mannitol, which is sparingly soluble, forms granules with bridge strength similar to the theoretical (Griffith) strength of a pure mannitol. Addition of HPC or PVP to the granulating solution produces bridges with strength comparable to that of pure polymer films. In comparison, the behavior of granules prepared with aqueous granulating solutions was much more complex due to the high saturation concentration of base powder. Granules produced with pure water had bridge strength approximately 20% of the theoretical strength. Addition of HPC or PVP to lactose granules increased the bridge strength modestly, but the strength was much smaller than that of the corresponding pure polymer films. Addition of HPC to mannitol granules had little effect on bridge strength, while PVP reduced bridge strength by approximately 30%. Addition of surfactants to the granulating solution also reduced dry bridge strength. These results reflect the complex microstructure and resulting mechanical properties of dry bridges produced by coprecipitation of the sugars and polymers (or surfactants).  相似文献   

15.
张新爱  关润伶 《广州化工》2014,(21):113-115
水泥抗压强度的测定过程有成型、养护、破型三个主要环节。各环节的试验条件不同,将直接影响抗压强度的测定结果。研究了水泥试件成型过程中流动度、试件尺寸、表面状态等试验条件对试件抗压强度测定结果的影响。结果表明:在一定范围内水灰比与抗压强度呈正相关关系,即水灰比越大,其流动度越好,抗压强度越高,当超过这个范围后,随着水灰比的增大,抗压强度逐渐减小;随着试件尺寸逐渐变大,抗压强度依次降低;试模涂油量多少不同,导致试件表面状态存在差异,涂油量过多或过少都会使抗压强度的测定结果偏低。  相似文献   

16.
为了促进建筑垃圾的再生利用,通过再生微粉替代部分水泥制备干混砂浆,探究再生微粉细度、掺量和复掺比对砂浆稠度、抗压强度、抗折强度和显微结构的影响规律。结果表明,随着再生微粉颗粒细度的减小,砂浆稠度整体呈下降趋势,28 d抗压、抗折强度均呈增加趋势,研磨40 h时,其强度达到最大值。随着再生微粉掺量的增加,砂浆稠度呈下降趋势,28 d抗压、抗折强度呈先增加后降低的趋势,当掺量为10%(质量分数)时,抗压强度达到最大值。随着再生微粉复掺比(质量比)的增大,砂浆稠度呈下降趋势,砂浆的28 d抗压、抗折强度呈先增加后降低的趋势,当研磨20 h的微粉与未研磨微粉复掺比为6∶4时,其抗压强度达到最大值。  相似文献   

17.
采用模量和强度更高的PP代替LDPE为核,在PP上接枝不同含量的PB-g-MAH(MLPB),在反应挤出过程中与PA6中形成了新型的核/壳(PP/PB-g-MAH)橡胶增韧体系。结果表明:硬核/软壳的增韧体系(PP/PA6)是一种十分有效的方式,能使共混物获得更好的缺口冲击强度、拉伸屈服强度和弹性模量之间的平衡。当PB-g-MAH含量为5%时,增韧体系缺口冲击强度可达480 J/m,而模量和屈服强度分别为2.13 GPa和54 MPa,相对纯尼龙6只有15%和13%的模量和屈服强度损失。  相似文献   

18.
The development of strength of pellets of fly ash with sintering temperature was investigated. Pellets heated below the shrinkage or electrical (Raask) sinter point did not develop strength over several hours. Hot crushing of pellets above the sinter point gave plastic deformation, presumably due to liquid on the particle surfaces. Cooling below the sinter point before crushing gave the same strength as crushing at room temperature, showing strength was due to solidification. Strength as a function of heat treatment temperature (1 h duration) above the sinter point went through a maximum, indicating that liquid is removed at higher temperature. SEM analysis of the cold pellets showed glassy sintering at conditions of maximum strength, and crystallization of mullite as strength decreased with higher heat treatment temperatures. Results suggest that iron silicate compositions increased the maximum sinter strength more than sodium silicate compositions. Water washing of fly ash reduced maximum strength. Addition of Na20 or surface films of sodium carbonate to a synthetic mineral mixture reduced the sinter point and led to strength development at lower temperatures: however, too high additions reduced the maximum strength.  相似文献   

19.
Microwave energy can accelerate the hydration of cement, resulting in rapid strength development of concrete in an early period. In this paper, prediction of later-age compressive strength of normal concrete, made with rapid-hardening and ordinary Portland cement, based on the accelerated strength of concrete cured with microwave energy was investigated. To accelerate curing properly, the optimal microwave curing process for concrete was first determined and then was applied to concrete. The possible early ages for the strength prediction were found to be at 3.5 and 5.5 h for concrete made with rapid-hardening and ordinary Portland cement, respectively. For each cement type, a formula for the strength prediction was derived from the relationship between accelerated early-age strength of concrete cured with microwave energy and later-age strength of normally cured concrete. Predictions of strength at 7 days for concrete made with rapid-hardening Portland cement and 28 days of concrete made with ordinary Portland cement were within 15% agreement with actual test results.  相似文献   

20.
从添加再生材料对新材料力学性能影响的角度出发,研究了不同比例新料聚丙烯(PP)和再生PP(RPP)混合后的力学性能差异,并基于车用外饰材料要求,研究了混合再生材料长周期热老化性能。结果表明,再生材料添加比例小于20 %时,对新料的力学性能影响不大;当新料拉伸、弯曲、冲击性能优于再生材料性能时,再生含量越高,混合材料性能越低;当再生材料拉伸、冲击性能优于新料性能时,混合材料拉伸和冲击性能呈现先下降后上升的趋势,混合比例相当时(配比C)性能达到最低值;混合再生材料经历100 ℃/1 000 h热老化处理后性能未降低,冲击性能呈现上升的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号