首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
使用模糊积分的方法将多个分类器进行融合可以提高分类精度,但是如何得到最优的模糊测度是一个尚未解决的问题。本文根据模糊测度Sugeno积分的理想特性,用模糊测度代替各个分类器的权值,利用粒子群算法全局搜索的优势,将模糊测度对应于粒子,并随速度和位置并不断调整,从而得到全局最优的模糊测度。通过仿真实例验证了新的多分类器融合模型具有较低的分类错误率,并能有效地提高分类精度。  相似文献   

2.
粒子群优化算法综述   总被引:4,自引:0,他引:4  
概括粒子位置、速度更新公式的修正,控制参数的变换和种群多样的维持等粒子群优化算法的改进技术,介绍具有量子行为、并行处理能力及解决多目标优化问题的新型粒子群优化算法,讨论粒子群优化算法和基他优化算法混合的基本思想.  相似文献   

3.
张千里  李星 《计算机工程》2006,32(21):33-34
模糊模拟通常用于模糊规划中。该文提出了基于粒子群优化算法(PSO)的模糊模拟方法,通过这一方法,可以用来计算可能值以及临界值。PSO是一种演化算法,它能够有效地进行全局搜索。试验表明,基于PSO的模糊模拟有更好的性能。  相似文献   

4.
黄文秀 《软件》2014,(4):73-77
粒子群优化算法(简称粒子群算法,PSO)是一种新兴的基于群体智能的启发式全局搜索算法,该算法概念简明、实现方便,收敛速度快、参数设置少,易编程,近年来受到学术界的广泛研究和应用。本文首先介绍PSO的基本原理和工作机制,然后着重就该算法研究的改进及应用进行阐述,最后对该算法的发展趋势进行展望。  相似文献   

5.
基于Modular网络重新解释了广为使用的模糊Sugeno模型。随后,EM算法,提出了该模型的新算法EM-SFM。证明了该算法的线性收敛法,分析了它的收敛速度。  相似文献   

6.
提出一种基于模糊C-均值算法和粒子群优化算法的混合聚类算法,该算法利用粒子群优化算法全局寻优的特点,有效地克服了模糊C-均值算法对初始值敏感、易陷入局部最优的缺点.实验表明,该算法具备良好的聚类效果.  相似文献   

7.
神经网络是模式识别中一种常见的分类器.针对同一个分类问题,构建多个分类器并把多个分类器进行融合可以提高分类系统的分类正确率、改善系统的稳健性.首先介绍了Sugeno模糊积分及Sugeno模糊积分神经网络分类器融合方法的一般原理,而后将其应用于手写数字识别,通过实际的案例验证了该融合方法的有效性和可行性.  相似文献   

8.
分析了模糊随机双重不确定性环境下供应链合作伙伴选择时存在的问题,提出了由供应链策略为主导,以模糊积分为决策工具的模糊随机多重多属性供应链合作伙伴选择与网络构建方法,以及模糊随机环境下的任务粗分配方法。通过事例模拟进行了验证,结果表明所提方法有效可行。  相似文献   

9.
基于模糊积分和遗传算法的分类器组合算法   总被引:3,自引:0,他引:3  
将多个分类器进行组合能提高分类精度。基于模糊测度的Sugeno和Choquet积分具有理想的特性,因此该文利用其进行分类器组合。然而在实际中难以求得模糊测度。该文利用两种方法求取模糊测度,一是分类器对样本数据的分类能力,另一种是根据遗传算法。这两种方法均考虑了每个分类器对不同类的分类能力不同这一经验知识。实验中对UCI中的几个数据库进行了测试,同时将该组合方法应用于一多传感器融合工件识别系统。测试结果表明了该算法是一种计算简便、精度较高的分类器组合方法。  相似文献   

10.
基于Sugeno 模糊模型的帆船控制方法研究   总被引:4,自引:1,他引:3  
针对非线性、时变的帆船航行系统,提出一种基于Sugeno模糊模型的帆船控制新方法.采集舵手的航行经验建立知识库,将专家知识融合到控制系统中,提高了控制系统的智能度;采用Sugeno模糊模型,将舵角的非线性控制局部线性化,并设计相应的局部线性控制器,通过模糊推理综合各局部线性控制器的输出,得到全局控制量.仿真结果表明,该方法能实现对帆船航向的智能控制,具有一定的实用价值.  相似文献   

11.
微粒群优化算法   总被引:40,自引:1,他引:39  
介绍了微粒群优化(PSO)算法的原理、算法流程、算法参数及其对算法性能的影响.讨论了各种改进的PSO算法.分析了多相微粒群优化算法(MPPSO)的原理、算法方程、算法参数及其对算法性能的影响.最后归纳了PSO算法的应用概况,并就PSO算法进一步的研究工作进行了探讨和展望.  相似文献   

12.
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高.  相似文献   

13.
基于改进粒子群优化算法的约束多目标优化   总被引:2,自引:2,他引:2       下载免费PDF全文
针对约束多目标优化问题,提出一种改进的粒子群优化算法,采用距离量度和自适应惩罚函数相结合的约束处理技术,通过可行解比例有效均衡目标函数和约束条件,提高算法的边界搜索能力。定义新的k最近邻聚集密度,保持解集分布性,并将聚集密度和轮盘赌选择相结合选取全局最优粒子。仿真结果表明,该算法在Pareto解集均匀性及逼近性方面均具有优势。  相似文献   

14.
引入克隆选择操作和借鉴免疫学习中较好的多样性来克服微粒群算法易陷于局部最优以及对多峰值函数搜索效果不佳的缺点,构建了一种免疫微粒群算法。将该算法应用于4个常见的测试函数,实验结果表明,该算法比标准微粒群算法有更好的收敛性和更快的收敛速度。  相似文献   

15.
粒子群优化覆盖算法   总被引:1,自引:0,他引:1       下载免费PDF全文
贾瑞玉  宁再早 《计算机工程》2011,37(21):167-169
在覆盖算法中,识别精度与泛化能力之间存在矛盾。为此,结合粒子群优化(PSO)具有的全局搜索能力,提出一种PSO覆盖算法。将领域覆盖算法中每一类样本形成的一组覆盖转化为粒子群,并在迭代过程中搜索出较好的覆盖粒子,从而得到一组个数较少且分类效果较好的覆盖。实验结果表明,该算法具有较高的分类识别精度及较优的泛化能力。  相似文献   

16.
针对粒子群优化(PSO)算法在寻优时容易陷入局部最优的不足,提出一种基于子区域的PSO算法。将搜索空间划分成若干个子区域,在各个子区域中均使用标准PSO算法进行寻优,通过比较各个子区域的全局最优解,从而得出整个搜索空间的全局最优。与标准PSO算法及自适应变异PSO算法的比较结果表明,该算法能降低在寻优过程中陷入局部最优的概率,具有较强的寻优能力。  相似文献   

17.
基于粒子群优化算法的自适应滤波   总被引:4,自引:0,他引:4  
提出并设计了一种基于粒子群优化算法的振动信号的自适应滤波模型。该滤波模型在计算机仿真测试中,获得了很高的效率和良好的结果。  相似文献   

18.
李金金  田雨波 《计算机工程》2011,37(24):173-175
粒子群优化算法在搜索全局最优过程中,粒子可能超出界限。针对该情况,提出5种新的受限制的边界条件,将出界粒子随机置于搜索空间内。通过基准函数将这5种边界条件与原有的6种边界条件进行对比测试,并从全局最优和收敛速度两方面对仿真结果进行分析,结果表明,新提出的随机重置的边界条件其性能明显优于置于边界的情况,无形/吸收的边界条件也稍优于其他不受限制的边界条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号