首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Next Generation Thermal Barrier Coatings for the Gas Turbine Industry   总被引:2,自引:0,他引:2  
The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.  相似文献   

2.
Nanometer-scaled yttria (Y2O3) powders were synthesized by a polymer solution route using polyvinyl alcohol (PVA) as an organic carrier. The PVA polymer contributed to a soft and porous powder microstructure, and homogeneous precursor gels containing PVA polymer were effective in making nanometer-sized yttria powders. In this process, the content of PVA and the calcination temperature strongly affected the microstructure and crystallization behavior of the yttria powders. The homogeneous precursors were crystallized to a stable yttria phase at 600 °C for 1 h. In this paper, a simple solution technique for the fabrication of nanometer-sized yttria powders is introduced. The effects of PVA on the powder morphology and on powder specific surface area were studied. The characterization of the synthesized powders was examined by using XRD, DTA/TG, SEM, TEM, a particle size analyzer and nitrogen gas adsorption. The yttria powder synthesized from PVA with a content ratio of 4:1 revealed a crystallite size of about 15 nm with a high surface area of 34.71 m2/g.  相似文献   

3.
In this work, the phase composition and microstructure evolution of vacuum plasma-sprayed MoSi2 coating between room temperature and 1200 °C in air was evaluated and characterized. The results showed that hexagonal MoSi2 (h-MoSi2) became the main phase in the deposited coating, which remained even after 50 h oxidation at 500 °C, exhibiting excellent thermal stability. MoO3 bundles and SiO2 clusters were generated by consuming tetragonal MoSi2 (t-MoSi2) after 1 h, and white powders formed on the coating’s surface after 10-h exposure to air at 500 °C. Most h-MoSi2 transformed to t-MoSi2 at 800 °C; moreover, a protective silica layer formed on the coating surface. Similar phenomenon was observed for the coating exposed to 1000 °C where grain growth also occurred. Vacuum heat treatment at 900 °C effectively improved the thermal stability of the MoSi2 coating. The formation of silica layer alleviated negative effects of structural defects and helped the MoSi2 coating serve as a protective coating for varied substrates.  相似文献   

4.
20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.  相似文献   

5.
A novel approach to prepare a coating system containing an in situ grown Cr2O3 diffusion barrier between a nickel top layer and 310SS was reported. Cold spraying was employed to deposit Ni(O) interlayer and top nickel coating on the Cr-contained stainless steel substrate. Ni(O) feedstock was prepared by mechanical alloying of pure nickel powders in ambient atmosphere, acting as an oxygen provider. The post-spray annealing was adopted to grow in situ Cr2O3 layer between the substrate and nickel coating. The results revealed that the diffusible oxygen can be introduced into nickel powders by mechanical alloying. The oxygen content increases to 3.25 wt.% with the increase of the ball milling duration to 8 h, while Ni(O) powders maintain a single phase of Ni. By annealing the sample in Ar atmosphere at 900 °C, a continuous Cr2O3 layer of 1-2 μm thick at the interface between 310SS and cold-sprayed Ni coating is formed. The diffusion barrier effect evaluation by thermal exposure at 750 °C shows that the Cr2O3 oxide layer effectively suppresses the outward diffusion of Fe and Cr in the substrate effectively.  相似文献   

6.
Hot-dip aluminizing method and subsequent interdiffusion treatment were used to develop a TiAl3 coating on Ti–45Al–2Cr–2Nb–0.15B (at.%) alloy. A two-phase coating consisting of an outer pure Al layer and an inner TiAl3 layer formed on the alloy after the hot-dip and then a single phase TiAl3 coating was obtained by using interdiffusion treatment. Oxidation of the TiAl3 coating was conducted at 900 and 1000 °C. Both the interrupt oxidation and the isothermal oxidation tests indicated that the coating provided high protectiveness for the alloy. The coating was stable for at least 300 h during the interrupt oxidation at 900 and 1000 °C, and it was stable for at least 500 h at 1000 °C and 1000 h at 900 °C during the isothermal oxidation. The oxidation behavior of the coating was discussed in detail.  相似文献   

7.
以NaCl为熔盐介质,采用锐钛矿型钛白粉和炭黑为原料,探索一种碳热还原结合熔盐法合成高纯碳化钛(TiC)的方法。借助XRD研究了反应温度和原料配比对合成碳化钛的影响,采用SEM、TEM、EDS、粒度分析仪、热力学分析等检测分析手段对合成产物的特性和过程进行分析。结果表明:相比传统的碳热还原合成碳化钛的方法,NaCl熔盐介质的引入可以有效地降低碳化钛的合成温度(从1700℃到1550℃)以及合成高纯碳化钛的时间(从10 h到3 h)。结合研究成果,提出了熔盐介质中溶解-沉淀的合成机理。  相似文献   

8.
The thermal durability of thermal barrier coating systems (TBCs) obtained using feedstock powders with different purity and phase content was investigated by thermal shock testing with different cycle times, including the effects on the sintering and phase transformation behaviors. Four 8 wt.% yttria-stabilized zirconia powders, with regular purity (TC1), high purity (TC2 and TC3), and without monoclinic phase (TC4), were employed to prepare the topcoat of TBC by atmospheric plasma spray on a NiCoCrAlY bondcoat deposited by high velocity oxy-fuel. The microstructure and phase stability of the topcoats affected the TBCs’ lifetime in the short-term (1 h) and long-term (24 h) furnace cyclic test (FCT) at 1100 °C and jet engine thermal shock (JETS) test. In the short-term FCT and JETS tests, in which coatings are severely subjected to thermal stress, the TBCs’ lifetime is most affected by the microstructure of the topcoat. The coating layer with the lowest monoclinic phase in the as-sprayed state showed the lowest phase-transformation characteristics in the isothermal oxidation test (1400 °C). These properties resulted in the best lifetime in the long-term FCT. Therefore, the coating material and evaluating methods of TBCs’ life should be selected depending on the usage environment.  相似文献   

9.
We report an approach using cold spray technology to coat poly(vinyl alcohol) (PVA) in polymer and hydrogel states with hydroxyapatite (HA). Using porous aggregated HA powder, we hypothesized that fragmentation of the powder upon cold spray could lead to formation of a ceramic coating on the surface of the PVA substrate. However, direct spraying of this powder led to complete destruction of the swollen PVA hydrogel substrate. As an alternative, HA coatings were successfully produced by spraying onto dry PVA substrates prior to swelling in water. Dense homogeneous HA coatings composed of submicron particles were obtained using rather low-energy spraying parameters (temperature 200-250 °C, pressure 1-3 MPa). Coated PVA substrates could swell in water without removal of the ceramic layer to form HA-coated hydrogels. Microscopic observations and in situ measurements were used to explain how local heating and impact of sprayed aggregates induced surface roughening and strong binding of HA particles to the molten PVA substrate. Such an approach could lead to design of ceramic coatings whose roughness and crystallinity can be finely adjusted to improve interfacing with biological tissues.  相似文献   

10.
The present work aims to improve mechanical properties of glass plates by coating homogeneous Ce4+-doped titania films on them with the sol-gel technique. The mechanical properties of coated glass plates and the film microstructure were characterized by using advanced equipments such as X-ray diffractometer, atomic force microscope, X-ray photoelectron spectrometer, nano-indenter and mechanical tester. Experimental results show that, the coated films, with a thickness of 20-100 nm and with a main phase of anatase, firmly adhere to the glass plates by sintering at 450 °C for 2 h. Their mechanical properties such as Young's modulus, strength, fracture toughness and microhardness are increased with the increase of film thickness and significantly increased by Ce4+ doping titania. Moreover, Ce4+ doping inhibits the crystallization of rutile phase and decreases anatase granularity. The effects of coating titania films and Ce4+-doping titania on mechanical properties of glasses are correlated to presence of chemical combinations between film and glass interface, decrease of surface roughness and anatase granularity, as well as reduction of the density of microcracks on the glass surface.  相似文献   

11.
The gas atomized Ag-9.26wt%Sn-0.44wt%La alloy powders were oxidized in air between 400 and 900 °C. The oxidation thermodynamics, kinetics and microstructure of the alloy were investigated. We suggested that the addition of La may accelerate oxidation of Sn and prevent the formation of the dense SnO2 film. The suitable oxidation temperature of the alloy powders is 800 °C in air. After internal oxidation, many cracks were observed on the surface of the alloy powders. In addition, the whole oxidation process of the alloy powders is controlled by the oxygen diffusion. The diffusion coefficient of oxygen in the alloy powders at 800 °C is about 1.5 times larger than that at 700 °C on the initial stage of internal oxidation, while that is 4.5 times on the subsequent stage.  相似文献   

12.
The surface of NiTi alloy was roughened by NaOH–HCl treatment, and the Ta-containing TiO2 films were coated on the pretreated NiTi alloy by the sol–gel method. Thermal analyses indicate that the evaporation temperature of the organics decreases with the addition of tantalum ethoxide in the TiO2 sol, but the crystallization temperature of anatase increases. The NaOH–HCl pretreatment improves the film integrity, but cracks still form in the films at high Ta contents(C20 %, molar ratio) owing to the increasing film thickness. X-ray diffraction(XRD) confirms that the addition of Ta suppresses the crystallization of anatase. X-ray photoelectron spectroscopy(XPS) reveals that Ta exists as Ta2 O5 in the film. With the increase of Ta content, the hydrophilic conversion of the films under UV illumination is impeded, but their corrosion resistance in 0.9 % NaCl solution increases, tested by the potentiodynamic polarization. The coating samples have acceptable hemolysis ratios for biomaterials(\5). The introduction of Ta improves the anti-aggregating function of the TiO2 film in the platelet adhesion test.  相似文献   

13.
This study investigated the feasibility of coating a steel St12 substrate with a sulfide/nitride layer. The coating process was conducted through a plasma electrolysis technique with a pulsed regime applied at frequencies of 100, 500, and 1000 Hz. It was found that the use of higher frequencies in the mentioned process provides better control over workpiece surface temperature and leads to reduced extent of voltage variations required to achieve a fixed temperature. The coating deposited at the frequency of 1000 Hz and voltage of about 235 V exhibited a nanostructure composed of 50 nm particles. The deposited coating consisted of an outer porous layer and an inner relatively dense layer. The x-ray studies identified the phases of the coating as γ′-Fe4N, Fe2-3N and FeS. The presence of FeS phase reduces the friction coefficient of the surface to about half the value obtainable in its absence. Studying the electrochemical impedance of the layer revealed that using a higher frequency in the deposition process increases the stability of resulting layer against seven days of immersion in the corrosive solution.  相似文献   

14.
The primary mullitized andalusite powders were spray-dried and heat-treated to improve sprayable capability. Then, mullite coating was deposited by atmospheric plasma spraying and heat treatment was contributed to recrystallization of the amorphous phase present in the as-sprayed mullite coating. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phase composition of mullite coating. Meanwhile, the phase transition temperature, enthalpy, and specific heat capacity of as-sprayed coatings as well as recrystallized mullite coatings were determined by means of differential scanning calorimetry (DSC). Moreover, tribological properties of as-sprayed coating were investigated by SRV-IV friction and wear tester from 200 to 800 °C. It has been found that the as-sprayed coating possesses good thermal stability. DSC analysis reveals that recrystallization of the glassy phase present in the mullite coating occurs at about 980 °C. The friction coefficient of mullite coating was gradually increased from 0.82 at 200 °C to the highest value of 1.12 at 800 °C, while wear rates of the coating were at the order of 10?5 mm3/Nm. The as-sprayed coating suffered the most severe wear at 800 °C. The observed wear mechanisms were mainly abrasive wear, brittle fracture, and pulling-out of splats.  相似文献   

15.
cBN/NiCrAl nanocomposite coatings were deposited by cold spraying using mechanically alloyed composite powders. To examine their thermal stability, the nanocomposite coatings were annealed at different temperatures up to 1000?°C. The microstructure of composite coatings was characterized by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nanostructure can be retained when the annealing temperature is not higher than 825?°C, which is 0.7 times of the melting point of the NiCrAl matrix. The dislocation density was significantly reduced when the annealing temperature was higher than 750?°C. The reaction between cBN particles and the NiCrAl matrix became noticeable when the annealing temperature was higher than 825?°C. The effects of grain refinement and work-hardening strengthening mechanisms were quantitatively estimated as a function of annealing temperature. The influence of annealing temperature on the contribution of different strengthening mechanisms to coating hardness was discussed.  相似文献   

16.
通过高分辨透射电镜法,差示扫描量热法和x射线衍射法分析了二氧化钛凝胶向锐钛矿转变的相变过程。结果发现,三种方法测试的相变行为并不完全一致。透射电镜分析结果表明,在100 °C干燥24 h的非晶态凝胶中存在少量的结晶不完全的锐钛矿相;然而x射线衍射法并未检测出晶体。随着烧结温度的升高,锐钛矿的晶格常数c逐渐降低,当温度达到300 °C以后接近标准值(如,JCPDS 卡片号 84-1285)。而晶格常数a则保持了相对稳定并且透射电镜法和x射线衍射法计算出的结果基本一致。另外,透射电镜法分析的锐钛矿的晶粒度大于x射线衍射法检测出的晶粒度  相似文献   

17.
Frictional behavior of nano and hybrid-structured NiAl-Cr2O3-Ag-CNT-WS2 adaptive self-lubricant coatings was evaluated at a range of temperatures, from room temperature to 700 °C. For this purpose, hybrid structured (HS) and nanostructured (NS) composite powders with the same nominal compositions were prepared by spray drying and heat treatment techniques. A series of HS and NS coating samples were deposited on steel substrate by an atmospheric plasma spraying process. The tribological behavior of both coatings was studied from room temperature to 700 °C at 100° intervals using a custom designed high temperature wear test machine. Scanning electron microscopy was employed for the evaluation of the composite coatings and worn surfaces. Experimental results indicated that the hybrid coating had inferior tribological properties when compared to the nanostructured coating, showing the attractive frictional behavior on the basis of low friction and high wear resistance; the NS coating possessed a more stable friction coefficient in the temperature range of 25-700 °C against alumina counterface. Microstructural examinations revealed more uniformity in NS plasma-sprayed coatings.  相似文献   

18.
It is demonstrated that the addition of Pt to CoNiCrAlY overlay coating can significantly improve its oxidation resistance and thermal stability as well as its performance in thermal barrier coatings. The addition of Pt is found to stabilize a surface layer with composition based upon NiAlPt2 with L1o superlattice in addition to enhancing a more favorable distribution of Y and restricting the outward diffusion of detrimental substrate elements particularly Ta and Ti. Due to these beneficial effects, utilizing the Pt-modified bond coating in a TBC system with top coating of zirconia stabilized by yttria is found to extend its lifetime from 410 ± 42 h to 956 ± 48 h as determined from cycling oxidation tests at 1150 °C. However, spallation of the top coatings in the two systems has been correlated with loss of oxide adherence to the bond coatings.  相似文献   

19.
《Surface & coatings technology》2007,201(21):8715-8722
In this study, TiO2-based coatings containing Ca and P ions were prepared on titanium alloy surfaces by microarc oxidation (MAO). After soaking in aqueous NaOH solution and subsequent heat treatment at 700 and 800 °C, calcium titanate/titania bioceramic composite (CTBC) coatings were obtained. The results show that the outer layers (0–1.5 μm) of the CTBC coatings are mainly composed of Ca, Ti, O and Na constituents with a uniform distributions with increasing the depth near the surfaces. The surface phase compositions of the CTBC coating formed at 700 °C are anatase, rutile and CaTi21O38 phases, as well as a few CaTiO3, while those of the CTBC coating formed at 800 °C are anatase, rutile and CaTiO3. When incubated in a simulated body fluid (SBF), apatite was deposited on the CTBC coatings probably via formation of hydroxyl functionalized surface complexes on the CTBC coating surfaces by ionic exchanges between (Ca2+, Na+) ions of the CTBC coatings and H3O+ ions in the SBF. The CTBC coating formed at 800 °C seems to facilitate the deposition of Ca and P probably due to the good crystallographic match between perovskite CaTiO3 and HA on specific crystal planes.  相似文献   

20.
This paper describes and analyzes the appearance, phase, and photocurrent of titanium film surfaces after exposure to water vapor at 100–1000 °C. The experimental results show that water vapor at higher than 300 °C can cause measurable oxidation of the titanium surface, and the oxidation product is changed into rutile from anatase in a gradual phase transformation with temperature. In the reaction, the product produced at 500–900 °C is a mixed phase of rutile and anatase. The titanium film surface appearance can change regularly with temperature, and an acicular rutile oxidation product can be produced on the surface at 800 °C. The photocurrent density on titanium surface increases with reaction temperature, and comes to a maximum value at 800 °C. However, with further increase in reaction temperature, the density decreases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号