首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

ABSTRACT

One of the main objectives of artisanal rice parboiling is to reduce the levels of broken grains (brokens) on milling. Rice samples that had been parboiled using different regimes of soaking temperatures and steaming times were analyzed for their physical properties and cooked rice textures. It was established that inappropriate soaking and steaming regimes resulted in greater levels of brokens than raw‐milled paddy. Consequently, in artisanal parboiling, the initial soaking temperature should be about 90C and the steaming time should be more than 8 min, ideally, about 12 min. On cooking, more severely parboiled rice samples had firmer textures than mildly parboiled samples. The commercially parboiled sample and the more severely laboratory‐parboiled samples required a rice‐to‐water ratio of 1:3, while the raw‐milled sample and the mildly parboiled ones required a 1:2½ rice‐to‐water ratio for optimum cooking.

PRACTICAL APPLICATIONS

Artisanal rice parboiling is carried out mainly to reduce the levels of broken grains and increase the yield of milled rice in many countries. If this is carried out very well, there are economic benefits as more rice of better quality is available to be sold. This study provides information on optimum processing conditions, i.e., initial soaking temperature of about 90C and a steaming time of about 12 min. The study also provides recommendations on optimum cooking conditions, i.e., rice‐to‐water ratio, for the variably parboiled rice samples.  相似文献   

2.
INFLUENCE OF PARBOILING ON RICE STARCH STRUCTURE AND COOKED-RICE TEXTURE   总被引:1,自引:0,他引:1  
Four varieties of rice having very high (29.4%) to low (17.6%) amylose-equivalent (AE) were parboiled by steaming at atmospheric (PB-O) and at 3 kg/cm2 (PB-3) gauge pressure. The cooked rice texture of the raw, PB-0 and PB-3 rice was determined by Viscoelastographe. Gel permeation chromatography of rice flour starch on Sepharose CL-2B, in general, indicated thermal breakdown of starch. The extent of starch breakdown and the firmness values of cooked PB-0 and PB-3 rices were reasonably well correlated suggesting that starch breakdown during parboiling may have some role to play in varying the texture of rice by parboiling. The chain profile of rice starch remained unaltered after parboiling.  相似文献   

3.
Six high-yielding varieties of rice (Oryza sativa L) were taken and subjected to 6 and 8% degree of milling. The raw rice and the parboiled rice were analysed microbiologically for thiamin and riboflavin contents. Milled parboiled rice contained more thiamin and riboflavin that milled raw rice at both the levels of milling because parboiling of paddy results in inward diffusion of water-soluble vitamins to the endosperm. The thiamin content of brown rice is reduced after parboiling. The loss may be due to the partial decomposition of thiamin during the stages of parboiling, but the riboflavin content of brown rice is found to be increased after parboiling.  相似文献   

4.
The present study evaluated the key factors affecting the efficiency of iron (Fe) penetration into the endosperm in parboiled rice of different varieties. It also investigated effects of storage time on Fe bio-accessibility, rice colour and Fe retention after rinsing. Rice grains of three varieties were fortified with an increasing range of Fe-fortification rates during the parboiling process, under two typical parboiling conditions, which are ambient soaking temperature for 24 h and 60 °C soaking temperature for 6 h at neutral (6.0–6.5) and acidic pH (3.0–3.5). Soaking of paddy rice, at 60 °C in acidic water for 6 h before steaming, was found to be better for maximising the Fe concentration in white-parboiled rice than the former ambient soaking. Under this parboiling condition, adding 250 mg Fe kg−1 of paddy rice, at soaking, produced the most desirable Fe concentration in white rice, ranging from 17.5 to 25.4 mg kg−1 among the rice varieties tested. The concentrations of Fe in parboiled white rice exhibited an exponential increase with increasing concentrations of Fe in the soaking water in all varieties, which were linearly related to Fe concentration of brown rice (r = 0.96∗∗, p < 0.01). The colour of the parboiled rice fortified with Fe was initially light yellow, with variation among rice varieties, but it did become slightly darker after 16 weeks of storage, probably because of Fe oxidisation. This may be related to decreasing bio-accessibility after 20 weeks of storage. Storage, however, did not affect the total Fe retention after rinsing, though the retention rate was variety-dependent. Information about parboiling will provide the basis for formulating an optimal industry protocol for producing Fe-fortified-parboiled rice, which can be further refined in pilot studies on the industrial scale.  相似文献   

5.
The cooking characteristics of parboiled rice are related to (i) its hydration behaviour at temperatures above and below the gelatinisation point; (ii) to kernel elongation on cooking; and (iii) to the extent of amylose solubility. These properties differ among samples, depending on the parboiling conditions. Samples were prepared by parboiling paddy at 70, 80, 90, 100, 110 and 120°C. The kernel elongation on cooking and the amount of soluble amylose in the gruel were then determined. The water uptake values for raw and parboiled rice samples were determined by hydrating them at room temperature (25-30), 60 and 98°C (boiling temperature) for optimal cooking times. The rate of hydration at temperatures below the gelatinisation point increased on parboiling and, conversely, a reverse pattern above this point. Close correlations existed between the temperature of parboiling and the properties studied. The different properties studied also correlated well. The temperature of parboiling influenced the linear elongation of the kernel after cooking. The soluble amylose content was negatively correlated with the temperature of parboiling. Though the hydration properties of different parboiled samples differed among themselves, depending on the degree of parboiling, they fell into two distinct classes, viz. the samples parboiled at a temperature close to the gelatinisation point having cooking qualities similar to raw rice, and above this point qualities differing from raw rice. The water uptake values at room temperature and at 60°C, and the ratio of water uptake at 98°C and optimum cooking time to that at 60°C were found to be useful in differentiating the parboiled rices into the two classes.  相似文献   

6.
ABSTRACT: Rough rice (RR) is the conventional feedstock for parboiling. The use of brown rice (BR) instead of RR is gaining interest because it results in shorter processing time and lower energy requirement. This study compared the functional properties of milled parboiled rice under different parboiling conditions from RR and BR. Presoaked RR and BR from cultivars Bolivar, Cheniere, Dixiebelle, and Wells were parboiled under mild (20 min, 100 °C, 0 kPa) and severe (20 min, 120 °C, 98 kPa) laboratory‐scale conditions. Head rice yield improved on the RR and BR samples subjected to severe parboiling and was comparable to that of a commercially parboiled sample. Mild parboiling of BR resulted in lower head rice yields. Parboiling generally resulted in decreased head rice whiteness, decreased apparent amylose, increased total lipid, and sparingly changed protein content. Under the same parboiling conditions, the extent of starch gelatinization was higher for BR compared to RR as manifested by some distinct differences in pasting and thermal properties. The cooking characteristics (water uptake ratio, leached materials, and volumetric expansion) and cooked rice texture (hardness and stickiness) of RR and BR subjected to severe parboiling were fairly comparable. Differences in parboiled rice functional properties due to cultivar effect were evident.  相似文献   

7.
The enzymes amylase, protease, phosphatase and β-glucosidase in rough rice (paddy) were activated during the soaking step of parboiling. The extent of activation of these enzymes varied with the soaking duration and the parboiling methods adopted. Highest activities were observed in the cold soaking method followed by the double steaming and household methods. β-Glucosidase activity was eliminated in the presteaming stage of the double steaming process. Hot soaking inactivated all these enzymes. The steam in the parboiling process inactivated the enzymes partly while the pressure parboiling process inactivated them totally. Studies with purified enzymes also revealed the activation of enzymes during soaking. Enzyme activity contributes to the loss of solids during soaking and also to the characteristic odor of parboiled rice.  相似文献   

8.
Vitamin E and γ-oryzanol display a wide range of biological activities including hypocholesterolemic, anti-inflammatory and antioxidant activities. Although white rice is far more popular worldwide, consumption of brown rice is increasing, partially on account of the presence of bioactive compounds; however, the effects of parboiling, storage and cooking on them are not well-characterized. The effects of parboiling and a 6-month storage period on the contents of vitamin E and γ-oryzanol in three brown rice cultivars grown in three different locations in Brazil were investigated. Also, their levels in branded non-parboiled and parboiled brown rice were monitored before and after cooking. Vitamin E homologues and γ-oryzanol were separated by RP-HPLC equipped with PDA and fluorescence detectors. The average levels of total tocols and γ-oryzanol in the raw brown rice cultivars studied were 25 and 188 mg/kg, respectively. Of the vitamin E homologues, γ-tocotrienol contributed with 74% of total tocols, followed by α-tocopherol, α-tocotrienol and γ-tocopherol in minor quantities. The combined processes, parboiling, storage and cooking, led to an approximate 90% reduction in tocols and only γ-tocotrienol was detectable after any of the processes. Parboiling followed by storage resulted in an approximate 40% loss of γ-oryzanol. Cooking had almost no further effect over γ-oryzanol levels in parboiled rice previously stored for 6 months.  相似文献   

9.
稻谷水热加工过程中镉迁移规律研究   总被引:1,自引:0,他引:1  
目的研究稻谷在蒸谷米水热加工过程中镉的迁移规律。方法以蒸谷米小试装置及生产线采集样品为研究对象,在优化碾米时间的基础上,在排除水分含量差异对测定结果的前提下,利用统计分析考察水热工艺(浸泡和蒸煮)对稻谷各部分(稻壳、米糠和精米)镉含量的影响。结果由实验数据推断,在水热过程中,镉的迁移主要发生在稻谷的内部,且主要是在浸泡时从精米向米糠迁移富集,而蒸煮工艺则对镉的分布变化影响很小;经过浸泡,精米中的镉含量可降低约40%;推测热水的浸泡一方面使胚乳淀粉分子间游离的镉部分溶出,一方面促使镉向络合能力更强的米糠蛋白迁移,最终导致其分布发生明显变化。结论该研究为在稻谷加工过程中实现重金属镉的消减提供了科学依据。  相似文献   

10.
BACKGROUND: The effects of pelleting on the extent of the Maillard reaction (MR) and on calcium, magnesium and zinc solubility and absorption were analysed in a conventional pre‐starter diet for suckling piglets. Development was tested measuring colour, absorbance (280/420 nm), fluorescence, residual free lysine, furosine, hydroxymethylfurfural (HMF) and furfural contents before and after pelleting. Fluorescence, absorbance and mineral solubility were also measured after in vitro digestion of diets. The effects on mineral absorption were tested using Caco‐2 cells. RESULTS: MR indexes confirmed the development of the reaction during the pelleting of this particular diet compared with the meal diet. The CIE‐Lab colour parameters showed a decrease in luminosity (L*) and progress of the colour to the red zone (a*) in the pelleted diet. A 36% decrease in free lysine content was observed. Significant correlations were observed between fluorescence intensity and furosine levels, HMF and furfural. The pelleting process did not modify calcium and magnesium solubility after in vitro digestion, but soluble zinc increased. The efficiency of calcium and zinc transport across Caco‐2 cell monolayers was greater in the pelleted diet. CONCLUSIONS: Evidence of MR development is shown, resulting in various nutritional consequences. Optimisation of pelleting could result in a better formulation of diets for feedstuffs. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
The microstructure of partially milled parboiled glutinous rice (PMPGR) before and after cooking was investigated using scanning electron microscopy to identify the changes in the microstructure due to parboiling treatments. Parboiling was performed in two different ways: conventional and modified. The conventional parboiling method involved soaking at room temperature for 24 h, followed by steaming and drying. The modified parboiling method involved tumbling to replace soaking of the rice grains, tempering, retorting, and drying. The microstructures of the PMPGR made using both methods were compared. The modified parboiling method significantly changed the microstructure of the rice, but cooking did not cause considerable changes in the microstructure of PMPGR.  相似文献   

12.
The textural properties of thawed samples of cooked parboiled, long (Cal Belle) and short (S201) grain rice varieties were evaluated using an Instron Universal Testing Instrument (Model 1122). In general, the parboiling treatments resulted in a significant increase of hardness but a significant decrease in stickiness of both long and short grain cooked rice when freezing conditions were pooled. Freezing increased hardness and decreased stickiness of long grain cooked parboiled rice significantly regardless of parboiling conditions, however, it did not decrease the stickiness of short grain cooked parboiled rice significantly. The long grain rice was harder and less sticky than the short grain rice when cooked regardless of treatments used. Hardness was negatively correlated with stickiness indexes (r =?0.819, P < 0.001).  相似文献   

13.
Resistant starch (RS) content could be altered by the processing method, including pre-treatment, cooking method and storage conditions. This study determined the influence of RS formation in white rice (WR), brown rice (BR) and parboiled germinated brown rice (PGBR) as affected by various pre-treatment and processing conditions. This is the first report to chemically and structurally analyse WR, BR and PGBR of the same rice variety using X-ray diffraction, DSC and SEM. The results showed that the PGBR prepared by a non-soaking process cooked with steaming and stored cold contained RS content (92.1 mg/g, wet basis) followed by BR processed by soaking, steamed and then stored cold (91.8 mg/g, wet basis). The formation of RS3 as not affected by the parboiling and germination process compared to WR and BR. Reheating reduced resistant starch content by changing the RS structure conformation from crystalline to amorphous under higher temperatures. Moreover, the scanning electron microscope revealed that WR, BR and PGBR of the same rice variety show similar starch granule and microstructure patterns but slightly different in thermal conductivity value.  相似文献   

14.
Studies on Expanded Rice. Optimum Processing Conditions   总被引:3,自引:0,他引:3  
Optimum conditions of parboiling, milling and puffing for making expanded rice were studied on a small laboratory scale. Optimum puffing was obtained by heating milled parboiled rice at a moisture content of 10.5–11% with 15 times its weight of fme sand at 250°C for 10–11 sec. Raw and mildly parboiled rice gave minimal expansion, which increased with increasing severity of parboiling up to a steam pressure of 1.5 kg/cm2. However, rice parboiled by heating with sand (250°C, 2.5 min) expanded best. Starch retrogradation after parboiling reduced expansion, as did cracked and broken grains and insufficient milling of the rice. Addition of salt increased expansion. Expansion initially increased and then decreased with increasing age of paddy after harvest.  相似文献   

15.
Specific and non-specific Maillard reaction (MR) indices such as CIELab colour, browning measurement, furosine, hydroxymethylfurfural (HMF) and furfural, as well as the nutrient content, were analysed for commonly consumed dishes, to test the effects of different culinary treatment on dishes composed of the same ingredients. In addition, the consumption of early MR products (MRP), Amadori compounds, HMF and furfural from a normal serving of these dishes was calculated. As expected, recipes including frying, apart from their particular composition, led to significantly higher values of furosine and HMF, ranging from 4.40 to 175 and from 0.30 to 22.7 mg/kg, respectively; consequently they provided the highest levels of Amadori compounds and HMF intake (0.42–26.8 and 0.02–2.38 mg/serving, respectively). Even so, MRP intake/serving was not very high in comparison with levels reported in the bibliography on some individual foods typically studied in terms of MR development, suggesting that the culinary treatments used do not make a great contribution to the daily MRP consumption.  相似文献   

16.
Various properties of raw and parboiled rice were compared in an effort to elucidate the factors responsible for the changes induced by parboiling.The parboiled rice was less prone to disintegration on cooking, the kernels remaining well separated and less sticky than the non-parboiled sample. The solids leached into the cooking water and the extent of solubilisation of the kernels on cooking were both considerably lowered by parboiling. Amylograms of flour prepared from the rice revealed that this was due to the resistance of the starch in the parboiled rice to swelling and solubilisation in hot water.From the results of X-ray diffraction spectra it was concluded that the behaviour of parboiled rice is influenced by the presence of an insoluble helical amylose complex and not, as is generally assumed, by retrogradation.  相似文献   

17.
Steamer is utilized to gelatinize rice starch. High pressure or long steaming time is conventionally applied to obtain the dark brown color of the product. A new alternative method to produce dark brown parboiled rice was proposed in this work. High temperature fluidized bed drying technique including tempering was therefore explored to determine the operating condition to meet the requirement of light and dark brown parboiled rice along with high head rice yield. In addition, the couple of heat and mass transfer model was developed to determine the effective moisture diffusion coefficient, the temperature and moisture distributions within a grain kernel during drying. The effective diffusion coefficient was well correlated with grain temperature by Arrhenius equation. The drying temperature and moisture content after drying caused the drop of head rice yield. When the parboiled paddy at the intermediate moisture contents of 22 and 27% d.b. was tempered, the head rice quality was improved while the parboiled rice color was browner. To obtain high drying capacity, high head rice yield, and light brown color, the parboiled paddy should be dried at a maximum allowable temperature of 150 °C and tempered for 30 min. The tempering time should be extended to 60 min for the dark brown parboiled rice.  相似文献   

18.
The Maillard reaction (MR) rate was observed according to available lysine loss, furosine, hydroxymethylfurfural (HMF), furfural, and brown colour during the heating of freeze-dried nano-filtered whey at 60, 75, and 90 °C and water activities of 0.11, 0.33, 0.43, and 0.73. The physical state of lactose was measured and associated with MR rate. The values obtained for available lysine, furosine, HMF and browning index ranged between, respectively, 11.3 and 1.63 (g 100 g−1 protein), 0.44 and 11.1 (g 100 g−1 protein), not detected and 57.7 (mg 100 g−1 protein) and 0.0104 and 0.1707. The greatest heat damage occurred with low moisture content and high temperature. The MR rate was influenced by the physical state of lactose, heating temperature and the moisture content of the whey. This occurred to a greater extent during the initial and intermediate stages of the MR as opposed to during the formation of coloured compounds.  相似文献   

19.
Swelling and solubility behaviour of parboiled rice flour   总被引:1,自引:0,他引:1  
Parboiled rice flour swelled and dissolved more than raw rice flour in water at temperatures below 70°C, but less than raw rice at higher temperatures. This difference between raw and parboiled rice increased with an increasing degree of parboiling. A sample of parboiled rice produced by dry-heating soaked paddy in hot sand behaved differently; but when it was wetted and tempered to favour reassociation of starch, its properties fell in line with normal steam-parboiled rice. The above behaviours of raw and parboiled rice flour were similar to those of corresponding whole-grain rice. They also reinforce the earlier suggestion of starch reassociation in conventional parboiled rice.  相似文献   

20.
The effects of heat–moisture treatment (HMT) (120 °C for 10, 30 and 60 min) on paddy rice grains before parboiling, on head rice yield (HRY), pasting and thermal properties, and colour and cooking characteristics of parboiled rice were studied. The results indicated that the HMT performed intensifies the changes in grains after parboiling, impacting pasting and thermal properties, which results in rice kernels with yellowish colouration and greater cooking time. HMT increased the temperatures of gelatinisation, with increasing HMT time from 10 to 60 min and reduced the gelatinisation enthalpy. HMT also affected the pasting properties of rice flours, reducing setback and viscosity and increased their stability to heat and mechanical agitation. The HMT performed in rice grains before the parboiling process with 60 min of the treatment decreased the HRY and increased the level of metabolic defects only in the treatment with 60 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号