首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A versatile SOI model derived from the BSIM3v3 bulk MOSFET model is capable of simulating partially and fully depleted devices with options for self-heating and floating body effects. The model can automatically switch between fully and partially depleted regimes. After refining body current models we for the first time present successful dc and transient device and circuit simulation of an SOI MOSFET technology with Leff below 0.2 μm  相似文献   

2.
Pulse propagation problems associated with dynamic floating-body effects, e.g., pulse stretching, is measured in partially depleted SOI CMOS inverter chains. Pulse stretching is found to be dependent on pulse frequency and VDD. Such behavior is attributed to floating-body-induced transient threshold voltage variation in partially depleted SOI CMOS devices due to floating-body charge imbalance between logic states during CMOS switching. Such an imbalance can be minimized through proper device design because of the different dependencies of the gate and drain depletion charges on channel length, silicon film thickness, gate oxide thickness, channel doping, and supply voltage. This is confirmed by measuring the maximum transient threshold voltage variation in discrete partially depleted SOI NMOS devices in configurations which are predictive of CMOS switching behavior  相似文献   

3.
The floating-body effect of nonvolatile memory cells fabricated using partially depleted silicon-on-insulator (SOI) technology has been investigated using two-dimensional numerical device simulation. Compared with similar bulk devices, the floating-body effect of partially depleted SOI MOSFETs introduces instability in the value of the drain current during sensing and extra hot-electron gate current in programming. The effects of the drain-current instability on the error margins in read operation are studied. The floating-body effect is found to be heavily dependent on biasing condition.  相似文献   

4.
The transient operation of partially depleted (PD) Silicon-On-Insulator (SOI) NMOSFET's is investigated, based on two-dimensional numerical simulations. The studied devices have a gate length of 0.2 μm and a floating body. They are designed for a supply voltage of 2 V. In the case of gate transient, we show that the body voltage is more influenced by the capacitive coupling with the gate electrode than the impact ionization current. Further, we demonstrate, for the first time, that the anomalous subthreshold slope, that exists in a DC static transfer I-V curve, does not exist in fast transient mode because the minimum time constant for body charging by impact ionization current is on the order of 3 ns in such devices  相似文献   

5.
The valence-band electron (EVB) tunneling current in partially depleted silicon-on-insulator (SOI) MOSFETs increases as the gate oxide gets thinner and affects the dynamic behavior of devices and circuits. We present an engineering model of EVB tunneling current based on the surface-potential formulation. The new model is implemented in a SOI MOSFET compact model and is used to study the impact of EVB tunneling on circuit performance. Simulations of stacked logic gates show that the EVB tunneling current not only boosts circuit switching speed but also mitigates the history dependence of propagation delays  相似文献   

6.
A junction breakdown model and the results of PISCES II simulations are presented for silicon-on-insulator (SOI) devices. This model shows the dependence of breakdown voltage in fully depleted (FD) SOI diode on the backgate bias, the properties of the buried oxide layer, and the device parameters. Breakdown in a thin FD SOI diode is quite different from that observed in a thicker, partially depleted (PD) diode. The analysis is supported by breakdown voltage measurements of separation by implantation of oxygen (SIMOX)-based SOI diodes, the results of which suggest that body breakdown is dominant in FD SOI diodes, and the junction curvature effect is dominant in PD SOI diodes. Furthermore, the results also show that breakdown voltage in the FD SOI diode is higher than their bulk-silicon counterpart and can be further increased by applying the appropriate backgate bias  相似文献   

7.
研究了0.5μm SOI CMOS器件和电路,开发出成套的0.5μm SOI CMOS工艺.经过工艺投片,获得了性能良好的器件和电路,其中当工作电压为3V时,0.5μm 101级环振单级延迟为42ps.同时,对部分耗尽SOI器件特性,如“浮体”效应、“kink”效应和反常亚阈值特性进行了讨论.  相似文献   

8.
一个适用于模拟电路的深亚微米SOIMOSFET器件模型   总被引:1,自引:1,他引:0  
从数值解源端和饱和点的表面电势出发 ,考虑模拟电路对 SOI MOSFET模型的一些基本要求如电荷守恒、器件源漏本征对称、各个工作区间连续并且高阶可导以及全耗尽和部分耗尽两种工作模式的转变 ,构建了一个能够满足这些要求的精确的器件模型 .同时包含了深亚微米 SOI MOSFET的一些二级效应如漏极诱生势垒降低效应 (DIBL )、速度饱和效应、自热效应等 .这个模型的参数相对较少并且精确连续 ,能够满足在模拟电路设计分析中的应用要求  相似文献   

9.
Measured current-voltage characteristics of scaled, floating-body, fully depleted (FD) SOI MOSFET's that show subthreshold kinks controlled by the back-gate (substrate) bias are presented. The underlying physical mechanism is described, and is distinguished from the well known kink effect in partially depleted devices. The physical insight attained qualifies the meaning of FD/SOI and implies new design issues for low-voltage FD/SOI CMOS  相似文献   

10.
A new method to determine the interface trap density in partially depleted silicon-on-insulator (SOI) floating body MOSFETs is proposed for the first time. It can be considered as a "transient" charge-pumping (CP) technique in contrast to the normally used "steady-state" method. In our technique, majority carriers are removed from the floating body by applying a burst of pulses to the transistor gate. The change in the linear drain current after each pulse is used to determine the device interface trap density. The unique advantage of this method is the possibility to use it to characterize SOI MOSFETs without a body contact. The technique proposed is simple, reliable, and can be used for the characterization of deep submicron devices  相似文献   

11.
部分耗尽SOI静态存储器位线电路的研究   总被引:1,自引:1,他引:0  
姜凡  刘忠立 《微电子学》2005,35(3):297-300,304
对部分耗尽SOI CMOS静态存储器的位线电路进行了模拟和研究,详细分析了BJT效应对SRAM写操作过程的影响,给出了BJT效应在SRAM写操作过程的最坏条件和最好条件下存储单元门管的瞬态泄漏电流的模拟结果;在详细分析BJT效应影响的基础上,对"First Cycle"效应进行了全面的研究.结果表明,"First Cycle"效应对写操作影响较大;研究了位线电容负载对存储单元门管体电位的依赖.最后,给出了研究结果.  相似文献   

12.
研究体偏置效应对超深亚微米绝缘体上硅(SOI,Silicon-on-insulator)器件总剂量效应的影响.在TG偏置下,辐照130nm PD(部分耗尽,partially depleted)SOI NMOSFET(N型金属-氧化物半导体场效应晶体管,n-type Metal-Oxide-Semiconductor Field-Effect Transistor)器件,监测辐照前后在不同体偏压下器件的电学参数.短沟道器件受到总剂量辐照影响更敏感,且宽长比越大,辐射导致的器件损伤亦更大.在辐射一定剂量后,部分耗尽器件将转变为全耗尽器件,并且可以观察到辐射诱导的耦合效应.对于10μm/0.35μm的器件,辐照后出现了明显的阈值电压漂移和大的泄漏电流.辐照前体偏压为负时的转移特性曲线相比于体电压为零时发生了正向漂移.当体电压Vb=-1.1V时部分耗尽器件变为全耗尽器件,|Vb|的继续增加无法导致耗尽区宽度的继续增加,说明体区负偏压已经无法实现耗尽区宽度的调制,因此器件的转移特性曲线也没有出现类似辐照前的正向漂移.  相似文献   

13.
利用二维模拟软件对部分耗尽SoI器件中的非对称掺杂沟道效应进行了模拟.详细地研究了该结构器件的电学性能,如输出特性,击穿特性.通过本文模拟发现部分耗尽SOI非对称掺杂沟道相比传统的部分耗尽SOI,能抑制浮体效应,改善器件的击穿特性.同时跟已有的全耗尽SOI非对称掺杂器件相比,部分耗尽器件性能随参数变化,在工业应用上具有可预见性和可操作性.因为全耗尽器件具有非常薄的硅膜,而这将引起如前栅极跟背栅极的耦合效应和热电子退化等寄生效应.  相似文献   

14.
利用二维模拟软件对部分耗尽SoI器件中的非对称掺杂沟道效应进行了模拟.详细地研究了该结构器件的电学性能,如输出特性,击穿特性.通过本文模拟发现部分耗尽SOI非对称掺杂沟道相比传统的部分耗尽SOI,能抑制浮体效应,改善器件的击穿特性.同时跟已有的全耗尽SOI非对称掺杂器件相比,部分耗尽器件性能随参数变化,在工业应用上具有可预见性和可操作性.因为全耗尽器件具有非常薄的硅膜,而这将引起如前栅极跟背栅极的耦合效应和热电子退化等寄生效应.  相似文献   

15.
A model based on SOI MOSFET and BJT device theories is developed to describe the current kink and breakdown phenomena in thin-film SOI MOSFET drain-source current-voltage characteristics operated in strong inversion. The modulation of MOSFET current by raised floating body potential is discussed to provide an insight for understanding the suppression of current kink in fully depleted thin-film SOI devices. The proposed analytical model successfully simulates the drain current-voltage characteristics of thin-film SOI n-MOSFETs fabricated on SIMOX wafers  相似文献   

16.
This letter reports an enhanced substrate current at high gate bias in SOI MOSFETs. A comparison between coprocessed bulk and partially depleted SOI MOSFETs is used to present the enhancement unique to SOI devices and demonstrate the underlying mechanism. Other than electric field, a new source for carrier heating in the channel, i.e., self-lattice heating, is found to be responsible for the excess substrate current observed. The impact of this phenomenon on SOI device lifetime prediction and compact modeling under dynamic operating conditions typical of digital circuit operation is described. This SOI-specific enhancement must be considered in one-to-one comparisons between bulk and SOI MOSFETs regarding hot-carrier effects  相似文献   

17.
It is demonstrated that the drain current overshoot in partially depleted SOI MOSFETs has a significant history dependence or memory effect, even in the absence of impact ionization under low drain biases. The measured output characteristics of partially depleted SOI MOSFETs are shown to be dynamically dependent on their switching history, frequency, and bias conditions, due to the finite time constants of carrier generation (thermal or impact ionization) and recombination in the floating body  相似文献   

18.
The well-known post-kink Lorentzian-like noise overshoot has been empirically correlated to the ac kink effect in the SOI CMOSFET in the past. This work demonstrates the existence of a 1/f2 excess noise spectrum (<100 Hz) superimposed upon 1/f noise in partially depleted (PD) floating body SOI CMOS when devices are biased in the pre-kink region (before the dc kink onset voltage). While the impact ionization phenomenon is negligible in the pre-kink region, the new observed pre-kink excess noise provides a new insight into the body voltage instability and current fluctuation in the SOI CMOSFET  相似文献   

19.
This paper reports a compact breakdown voltage model for partially depleted (PD) silicon-on-insulator (SOI) n-metal-oxide-semiconductor (NMOS) devices considering BJT/MOS impact ionization. Via the improved current conduction model considering BJT/MOS impact ionization this compact model provides an accurate prediction of the breakdown behavior of the PD SOI NMOS devices as verified by the experimental data and the MEDICI results. Based on the analytical model, when the gate voltage is lowered, the breakdown voltage decreases due to a stronger function of the parasitic BJT. In the subthreshold region, the breakdown voltage increases at a decreased gate voltage due to a weaker function of the parasitic BJT.  相似文献   

20.
To simulate and examine temperature and self-heating effects in Silicon-On-Insulator (SOI) devices and circuits, a physical temperature-dependence model is implemented into the SOISPICE fully depleted (FD) and nonfully depleted (NFD) SOI MOSFET models. Due to the physical nature of the device models, the temperature-dependence modeling, which enables a device self-heating option as well, is straightforward and requires no new parameters. The modeling is verified by DC and transient measurements of scaled test devices, and in the process physical insight on floating-body effects in temperature is attained. The utility of the modeling is exemplified with a study of the temperature and self-heating effects in an SOI CMOS NAND ring oscillator. SOISPICE transient simulations of the circuit, with floating and tied bodies, reveal how speed and power depend on ambient temperature, and they predict no significant dynamic self-heating, irrespective of the ambient temperature  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号