首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chelating resins have some good adsorption properties for some metal ions, especially for several noble metal ions. Thus to retrieve rare metals using chelating resins is always an interesting project for chemistry researchers. In this study we synthesized a series of chelating resins based on chitosan and investigated adsorbing capacities, adsorption rates, and adsorption selectivities for Ag(I), Au(III), Pd(II), Pt(IV), Cu(II), Hg(II), and Zn(II). The results indicate that the resins have remarkable adsorbing capacities and adsorption rates for four noble metal ions and Hg(II). For instance, one of the resins adsorbs Au(III) and the adsorbing capacity is up to 7.11 mmol/g. However, the adsorbing capacities of the resins for Cu(II) and Zn(II) are much less than for the noble metal ions. Finally, x-ray photoelectron spectroscopy studies of a chelating resin and its metal chelates were made. The result reveals that the basis of the chelations is a chemical process. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
A novel chelating resin anchoring 2‐amino‐pyridine on macroporous crosslinked polystyrene beads via a sulfur‐containing spacer (PVBS‐AP) has been synthesized and its structures were characterized by FTIR, scanning electron microscopy, porous structure analysis, and elementary analysis. The results of scanning electron microscopy and pores analysis demonstrated that PVBS‐AP resin had meso‐macro porous structure. Its adsorption properties for Hg(II), Pd(II), Ni(II), Cu(II), Zn(II), Pb(II), and Cd(II) were investigated. Some factors affecting the adsorption of PVBS‐AP resin for Hg(II), such as temperature, contact time, ion concentration, and pH were also studied. The results showed that the increasing of temperature was beneficial to adsorption and Langmuir model was much better than Freundlich model to describe the isothermal process. PVBS‐AP resin had good adsorption selectivity for Hg(II). It could selective adsorb Hg(II) from such binary ions system as Hg(II)‐Ni(II), Hg(II)‐Zn(II), and Hg(II)‐Pb(II), their selective coefficients are αHg/Ni = ∞, αHg/Zn = 28.1, αHg/Pb = ∞, respectively. Five adsorption–desorption cycles demonstrate that this resin were suitable for reuse without considerable change in adsorption capacity. POLYM. ENG. SCI., 47:721–727, 2007. © 2007 Society of Plastics Engineers.  相似文献   

3.
Two organosilicone resins (PCSN and PCSNN) were prepared from 1,3‐bis‐glycidyl‐ptert‐butyl‐calix[4]arene(BGC) via condensation with triethoxyaminopropylsilane or triethoxy‐4‐azo‐6‐aminohexylsilane, followed by copolymerization with tetraethoxysilane, respectively. The resins exhibit high thermostability and adsorb nitrogen under elevation temperature. The adsorption capacity of PCSN and PCSNN toward Mg(II), Cu(II), Pb(II), Hg(II), and Au(III) cations was determined and the thermodynamic parameter of the resins toward Au(III) ion was deduced. Human serum protein was also adsorbed on the resins. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 58–64, 2001  相似文献   

4.
Two different sulfur atom containing functional groups were introduced into poly(styrene-g-ethylene glycols), PSR-ET (13) OH, consisting of a cross-linked polystyrene backbone grafted with linear poly(ethylene glycol) chains. Reaction of an amino derivative of the polymeric substrate with carbon disulfide and methylisothiocyanate produced new chelating resins of dithiocarbamate type, PSR-ET (13) CS2Na, and methylthiourea type, PSR-ET (13) TU, respectively. The adsorption behavior of these resins was studied toward Hg(II), Cd(II), Cu(II), and Pb(II) ions in different experimental conditions. The order of metal adsorption for dithiocarbamate-supported resins was Hg(II) > Pb(II) ? Cd(II) > Cu(II) and for methylthiourea-supported resins was Hg(II) ? Cu(II) > Cd(II) ? Pb(II). Different regeneration methods were performed with the dithiocarbamate and methylthiourea resins; the former was regenerated by complete mineralization of the metal complexes, the latter by treatment with a solution of 6 N HCl and 10% of thiourea. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
《分离科学与技术》2012,47(5):729-741
Chelating PS-EDTA resins modified by metal (Fe, Al, and Zr) oxides were used as adsorbents to remove Hg(II) from aqueous solutions. The modified resins were characterized by BET, FTIR, and XPS. The amino, carboxylate, and the metal oxides on resins exhibited a synergistic effect for Hg(II) removal. It was observed that the modification of PS-EDTA resin not only increased the adsorption of Hg(II) but also accelerated the adsorption rate of Hg(II). The equilibrium data of Hg(II) were best described by the Freundlich isotherm, and the kinetics were found to follow the pseudo-second-order kinetic model. Also, thermodynamic parameters showed that Hg(II) adsorption was endothermic and spontaneous in nature. The increasing the concentration (0.1–2.0 g/L) of NaNO3 in Hg(II) solution did not affect the adsorption of Hg(II). Moreover, the competitive adsorption indicated that the modified resins had higher selectivity towards Hg(II) over Cd(II), Pb(II), Zn(II), or Cu(II) in a binary system. All of the above results indicated that the modified resin was an efficient and reusable adsorbent for Hg(II) removal due to its simple preparation, high adsorption capacity, fast adsorption rate, ionic strength independence, high selectivity, and good reusability. These properties are of potential application in the fixed-bed continuous-flow column for Hg(II) removal from wastewaters.  相似文献   

6.
Three network crown ether resins with a high content of pendent functional groups were prepared and characterized by IR, elemental analysis, and thermal analysis. The slight variance of the thermal stability of the resins was related to the kind and content of the pendent functional group. The adsorption capacity of the resins for Mg(II), Cu(II), Co(II), Pb(II), and Hg(II) was determined. Toward Hg(II), the adsorption capacity of the resins was high and the adsorption process was easy and spontaneously performed. The XPS study showed that the adsorption of the NCR–SN resin toward Cu(II), Pb(II), and Hg(II) was mainly the coordinate interactions between the ligand atom (S, N) of the pendent functional groups and the metal ions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1457–1465, 2000  相似文献   

7.
1,4,8,11‐Tetraazacyclotetradecane (cyclam) was reacted with acryloyl chloride in a 1 : 2 molar ratio in dichloromethane in the presence of pyridine at 0°C. The modified cyclam was polymerized by adding an azobisisobutyronitrile initiator and irradiated with a UV lamp under reflux for 6 h. Precipitated cyclam containing polymer in the bulk structure was removed from the suspension by filtration. After washing and drying the final polymeric materials were used for transition metal ion adsorption and desorption studies. A Fourier transform IR spectrophotometer and thermogravimetric analyzer were used to characterize the polymeric structure. The affinity of the polymeric material for transition metal ions was used to test the adsorption–desorption of selected ions [Cu(II), Ni(II), Co(II), Cd(II), Pb(II)] from aqueous media containing different amounts of these metal ions (5–800 ppm) at different pH values (2.0–8.0). It was found that the adsorption rates were high and the adsorption equilibrium was reached in about 30 min. The uptake of the transition metal ions onto the polymer from solutions containing a single metal ion was 3.17 mmol/g for Cu(II), 0.98 mmol/g for Cd(II), 0.79 mmol/g for Co(II), 0.78 mmol/g for Ni(II), and 0.32 mmol/g for Pb(II). This polymer showed high affinity for Cu(II) compared to the other metal ions in the single ion solution and in the mixture of transition metal ions. The affinity order of the transition metal ions was Cu(II) ? Ni(II) > Cd(II) > Co(II) > Pb(II) for competitive adsorption. More than 95% of the adsorbed transition metal ions were desorbed in 2 h in a desorption medium containing 1.0M HNO3. Poly(cyclam) was found to be suitable for repeated use of more than five cycles without a noticeable loss of adsorption capacity. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1406–1414, 2002  相似文献   

8.
Magnetic polymethylmethacrylate (mPMMA) microbeads carrying ethylene diamine (EDA) were prepared for the removal of heavy metal ions (i.e., copper, lead, cadmium, and mercury) from aqueous solutions containing different amount of these ions (5–700 mg/L) and at different pH values (2.0–8.0). Adsorption of heavy metal ions on the unmodified mPMMA microbeads was very low (3.6 μmol/g for Cu(II), 4.2 μmol/g for Pb(II), 4.6 μmol/g for Cd(II), and 2.9 μmol/g for Hg(II)). EDA‐incorporation significantly increased the heavy metal adsorption (201 μmol/g for Cu(II), 186 μmol/g for Pb(II), 162 μmol/g for Cd(II), and 150 μmol/g for Hg(II)). Competitive adsorption capacities (in the case of adsorption from mixture) were determined to be 79.8 μmol/g for Cu(II), 58.7 μmol/g for Pb(II), 52.4 μmol/g for Cd(II), and 45.3 μmol/g for Hg(II). The observed affinity order in adsorption was found to be Cu(II) > Pb(II) > Cd(II) > Hg(II) for both under noncompetitive and competitive conditions. The adsorption of heavy metal ions increased with increasing pH and reached a plateau value at around pH 5.0. The optimal pH range for heavy‐metal removal was shown to be from 5.0 to 8.0. Desorption of heavy‐metal ions was achieved using 0.1 M HNO3. The maximum elution value was as high as 98%. These microbeads are suitable for repeated use for more than five adsorption‐desorption cycles without considerable loss of adsorption capacity. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 81–89, 2000  相似文献   

9.
ABSTRACT

The extraction of Pd(II) from HC1 solutions by impregnated resins containing di-(2-ethylhexyl) thiophosphoric acid (DEHTPA or HL) on the Amberlite XAD2 polymeric support has been studied. Graphical and computer analysis with the program LETAGROP-DISTR demonstrated that the Pd(II) extraction can be explained by the formation of metal complexes in the resin phase having the composition PdL2(HL)2. DEHTPA/XAD2 resins extracted Pd(II) in the presence of other metals: Pt(IV), Rh(III), Cu(II), Fe(III) as well as Zn(II). The stripping of Pd(II) loaded on the organic phase and the lifetime of the resins were also investigated.  相似文献   

10.
The water‐insoluble resin poly(2‐acrylamido‐2‐methyl‐1‐propanosulfonic acid‐co‐4‐vinyl pyridine), through a radical polymerization solution, was synthesized with ammonium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinking reagent. The metal‐ion‐retention properties were studied by batch and column equilibrium procedures for the following metal ions: Hg(II), Cu(II), Cd(II), Zn(II), Pb(II), and Cr(III). These properties were investigated under competitive and noncompetitive conditions. The effects of the pH, maximum retention capacity, and regeneration capacity were studied. The resin showed a high retention ability for Hg(II) ions at pH 2.0. The retention of Hg(II) ions from a mixture of ions was greater than 90%. The resin showed a high selectivity for Hg(II) with respect to other metal ions. The Hg(II)‐loaded resin was able to be recovered with 4M HClO4. The retention capacity was kept after four cycles of adsorption and desorption. The retention properties for Hg(II) were very similar with the batch and column methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3556–3562, 2003  相似文献   

11.
Summary Dithiocarbamate (DTC) functions were incorporated into divinylbenzene-crosslinked (2–20 mole %) polyacrylamides by a two-step polymer-analogous reaction. The complexations of these resins with DTC functions in different structural environments were investigated towards Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) by batch equilibration technique. The metal ion intake decreased with the extent of the DVB content in the order Hg(II)>>Cu(II)>Zn(II)>Ni(II)>Co(II). The time-course on complexation, swelling behaviours of the uncomplexed and complexed resins, recyclability, IR and thermogravimetric characterisation of the complexes were carried out. The swelling of the resins decreased on complexation with metal ions and the thermal stability increased.  相似文献   

12.
《分离科学与技术》2012,47(8):1869-1883
Abstract

In the present work, thiourea-formaldehyde (TF) and urea-formaldehyde (UF) chelating resins have been synthesized and they have been used in the adsorptions of Ag(I), Cu(II), and Zn(II) metal ions by batch and column methods. The effect of initial acidity of Ag(I) solution and the adsorption capacities of TF and UF resins by batch method and the separation of Ag(I) ions from Cu(II) and Zn(II) base metal ions by the column method were examined experimentally. The adsorption capacities of TF and UF resins were found as 58.14 and 47.39 mg Ag(I)/g by batch method and 30.7 and 4.66 mg Ag(I)/g, 0.80 and 0.121 mg Cu(II)/g, and under 0.002 mg Zn(II)/g by the column method, respectively. It was found that Ag(I) ions showed higher affinity towards TF resin than UF resin, compared with Cu(II) or Zn(II) ions, and Ag(I) could be separated more effectively by TF resin from Cu(II)and Zn(II) ions.  相似文献   

13.
Dye‐affinity adsorption has been used increasingly for heavy metal removal. Synthetic hollow fibers have advantages as support matrices in comparison to conventional bead supports because they are not compressible and they eliminate internal diffusion limitations. The goal of this study was to investigate in detail the performance of hollow fibers composed of modified polyamide to which Cibacron Blue F3GA was attached for the removal of heavy metal ions. The Cibacron Blue F3GA loading was 1.2 mmol/g. The internal matrix was characterized by scanning electron microscopy. No significant changes in the hollow fiber cross‐section or outer layer morphology were observed after dye modification. The effect of the initial concentration of heavy metal ions and medium pH on the adsorption efficiency were studied in a batch reactor. The adsorption capacity of the hollow fibers for the selected metal ions [i.e., Cu(II), Zn(II) and Ni(II)] were investigated in aqueous media with different amounts of these ions (10–400 ppm) and at different pH values (3.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐attached hollow fibers were 246.2 mg/g for Cu(II), 133.6 mg/g for Zn(II), and 332.7 mg/g for Ni(II). Furthermore, a Langmuir expression was calculated to extend the adsorption equilibrium. Nitric acid (0.1M) was chosen as the desorption solution. High desorption ratios (up to 97%) were observed in all cases. Consecutive adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 3089–3098, 2002; DOI 10.1002/app.2338  相似文献   

14.
Metal chelating properties of Cibacron Blue F3GA‐derived poly(EGDMA‐HEMA) microbeads have been studied. Poly(EGDMA‐HEMA) microbeads were prepared by suspension copolymerization of ethylene glycol dimethacrylate (EGDMA) and hydroxy‐ethyl methacrylate (HEMA) by using poly(vinyl alcohol), benzoyl peroxide, and toluene as the stabilizer, the initiator, and the pore‐former, respectively. Cibacron Blue F3GA was covalently attached to the microbeads via the nucleophilic substitution reaction between the chloride of its triazine ring and the hydroxyl groups of the HEMA, under alkaline conditions. Microbeads (150–200 μm in diameter) with a swelling ratio of 55%, and carrying 16.5 μmol Cibacron Blue F3GA/g polymer were used in the adsorption/desorption studies. Adsorption capacity of the microbeads for the selected metal ions, i.e., Cu(II), Zn(II), Cd(II), Fe(III), and Pb(II) were investigated in aqueous media containing different amounts of these ions (5–200 ppm) and at different pH values (2.0–7.0). The maximum adsorptions of metal ions onto the Cibacron Blue F3GA‐derived microbeads were 0.19 mmol/g for Cu(II), 0.34 mmol/g for Zn(II), 0.40 mmol/g for Cd(II), 0.91 mmol/g for Fe(III), and 1.05 mmol/g for Pb(II). Desorption of metal ions were studied by using 0.1 M HNO3. High desorption ratios (up to 97%) were observed in all cases. Repeated adsorption/desorption operations showed the feasibility of repeated use of this novel sorbent system. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1397–1403, 1999  相似文献   

15.
The complexation behaviour of dithiocarbamate functions supported on polyacrylamides with varying extents (2-20 mol%) of N,N′-methylene-bis-acrylamide (NNMBA) crosslinks was investigated. The crosslinked polyacrylamides were prepared by the free radical solution polymerization of the monomers in water at 80°C using potassium persulphate as initiator. The dithiocarbamate ligands were introduced by polymer-analogous reaction involving transamidation with ethylenediamine and dithiocarbamylation with carbon disulphide and alkali. The complexation behaviour of these dithiocarbamate resins with the ligand functions in different macromolecular environments were investigated towards Co(II), Ni(II), Cu(II), Zn(II) and Hg(II) ions by a batch equilibration technique. The metal ion intake varied with the extent of the NNMBA-crosslinking. Thus the 8% crosslinked system has the highest complexation capacity. The values for metal ion intake followed the order Hg(II)> Cu(II)> Zn(II)> Ni(II)> Co(II). The time-course of complexation, the possibility of recycling and the swelling characteristics of the uncomplexed and complexed resins were considered, and IR characterization and thermal studies were undertaken. The swelling values of the complexed resins are lower than those of the uncomplexed resins. The thermal stability of dithiocarbamates varied with the extent of NNMBA-crosslinks and with the metal ion.  相似文献   

16.
In the work, poly(ethylene terephthalate) (PET) fibers were grafted with 4‐vinyl pyridine (4‐VP) monomer using benzoyl peroxide (Bz2O2) as initiator in aqueous media. The removal of Hg(II) ions from aqueous solution by the reactive fiber was examined by batch equilibration technique. Effects of various parameters such as pH, graft yield, adsorption time, initial ion concentration, and adsorption temperature on the adsorption amount of metal ions onto reactive fibers were investigated. The optimum pH of Hg(II) was found 3. The maximum adsorption capacity was found as 137.18 mg g?1. Moreover such parameters as the adsorption kinetics, the adsorption isotherm, desorption time and the selectivity of the reactive fiber were studied. The adsorption kinetics is in better agreement with pseudo‐first order kinetics, and the adsorption data are good fit with Freundlich isotherms. The grafted fiber is more selective for Hg(II) ions in the mixed solution of Hg(II)‐Ni(II), Hg(II)‐Zn(II), and Hg(II)‐Ni(II)‐Zn(II) at pH 3. Adsorbed Hg(II) ions were easily desorbed by treating with 1M HNO3 at room temperature. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
A novel chelating resin bearing amidinothiourea (ADTU) moieties was prepared by chloroethyl crosslinked polystyrene (CMPS) with ADTU in the presence of a phase transfer catalyst. Fourier transform infrared spectra (FT-IR) and scanning electron microscopy (SEM) were used to characterized the resulting chelating resin. The saturated adsorption capacity of Hg(II) ions estimated from the Langmuir model was up to 1215 mg g?1at 313 K. Furthermore, the resin was able to selectively separate Hg(II) from multicomponent solutions with Cd(II), Co(II), Cu(II), Zn(II), Mg(II) and Pb(II). The desorption process showed the mercury recovery reached to 99.2% under eluting condition of 1 M HCl + 8% thiourea.  相似文献   

18.
The sorption behavior of palladium(II) (Pd(II)) onto strongly basic anion exchange Dowex resins was studied depending on the concentration of hydrochloric acid (0.1–6.0 M HCl–100 mg Pd(II)/L), concentration of hydrochloric and nitric(V) acids (0.1–0.9 M HCl–0.9–0.1 M HNO3–100 mg Pd(II)/L), and the time of contact of the solution with the anion exchange resin in the batch mode. Similar research was carried out also for the base metal ions such as cobalt(II) (Co(II)), copper(II) (Cu(II)), nickel(II) (Ni(II)), and zinc(II) (Zn(II)). The sorption process was also examined depending on the initial Pd(II) concentration, agitation rate, bead size distribution, and temperature. Pd(II) sorption was also checked in the column mode. The equilibrium and kinetic characteristics of the sorption of Pd(II) with the Dowex PSR-2 and Dowex PSR-3 anion exchange resins were determined. The possibilities of Pd(II) elution and reuse using the batch method was exploited. Pd(II) and Zn(II) sorption on the Dowex resins is time and concentration of acids dependent. Evaluating the determination coefficients, the kinetic studies showed that the pseudo-second-order equation and the Langmuir model described the data more appropriately than others. The maximum sorption capacity was 165.15 mg Pd(II)/g for Dowex PSR-2 and 184.39 mg Pd(II)/g for Dowex PSR-3. Dowex resins give quantitative Pd(II) removal from diluted acidic solutions.  相似文献   

19.
The crosslinked poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide], P(MAPDSA), and poly[3‐(methacryloylamino)propyl]dimethyl(3‐sulfopropyl)ammonium hydroxide‐co‐acrylic acid], P(MAPDSA‐co‐AA), were synthesized by radical polymerization. The resins were completely insoluble in water. Due to the lower metal ion retention of P(MAPDSA), the metal ions investigated under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) ions by batch and column equilibrium procedures were carried out only for P(MAPDA‐co‐AA), particularly for Hg(II). The resin–Hg(II) ion equilibrium was achieved before 15 min. The resin showed a maximum retention capacity value for Hg(II) at pH 2 of 1.89 meq/g. The resin showed a high selectivity to Hg(II) ions. The recovery of the resin was investigated at 25°C with different concentrations of HNO3 and HClO4. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 525–530, 2005  相似文献   

20.
Macroreticular chelating resins containing carboxylic groups, poly(N-hydroxymethyl acrylamide-co-acrylic acid) P(HMA-co-AA) and poly(N-hydroxymethyl acrylamide-co-2-acrylamido glycolic acid) P(HMA-co-AGA) were synthesized by solution radical polymerization with ammonium persulfate as initiator and N,N′-methylene-bis-acrylamide as cross-linking reagent. The polymerization yield was 98.9 and 91.9% for P(HMA-co-AA) and P(HMA-co-AGA), respectively. The retention properties were studied under competitive and noncompetitive conditions by batch equilibrium procedure for the following metal ions: Cd(II), Cr(III), Zn(II), Pb(II), and Hg(II). The effects of pH, time, temperature, and initial ion concentration on adsorption were investigated. The resins showed a significant ability to retain Pb(II), greater than 79%, at pH 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号