首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamics and heat transfer experiments were carried out in a slurry bubble column with air‐water‐yeast cells and air‐water‐bacteria cells systems to investigate gas hold‐up, bubble characteristics and heat transfer coefficients with cell concentrations of 0.1% w/w and 0.4% w/w and superficial gas velocity up to 0.20 m/s. The gas hold‐ups and heat transfer coefficients were found to increase with increasing gas velocity and cell concentration. The heat transfer coefficients were higher at the centre of the column as compared to the near wall region. The development of empirical correlations to predict the heat transfer coefficient in two‐ and three‐phase systems was carried out with ±15% confidence interval at most.  相似文献   

2.
Heat transfer coefficients were measured in fluidization columns of 0.29 m and 1.56 m ID at fixed distance above the distributor, using an identical vertical heater, the same alumina particles and geometrically scaled bubble-cap distributors. The magnitude of the maximum heat transfer coefficients was found to be unaffected by the column diameter, but occurred at higher superficial velocities in the larger column. When the local flow structure near the heater corresponded to the turbulent flow regime of fluidization, the local heat transfer coefficients were independent of radial position in both columns.  相似文献   

3.
The metrology and the impact of various parameters and operating conditions on the bulk‐to‐tube heat transfer coefficients in two‐phase bubble columns are investigated on a small‐scale mock‐up. It is shown that (1) quasi‐adiabatic conditions can be reached in the column; (2) the bulk‐to‐tube heat transfer coefficients for each U‐tube downward and upward sections may or may not differ significantly, depending on the way uncertainty of the measurements is estimated; (3) using the different measurements and uncertainty estimates for given conditions, a mean heat transfer coefficient over all tubes is estimated within ±5%. The consequences for bulk‐to‐tube heat transfer coefficient prediction in a larger column are discussed.  相似文献   

4.
Air-holdup and heat transfer coefficient data are reported for the air-water and air-water-sand system as a function of air velocity in the temperature range 297-343 K as measured in a 0.305 m diameter bubble column operating in semi-batch mode and equipped with either a five- or seven-tube bundle. A 65 μm average size sand powder is used at concentrations of 5 and 10 mass percent in the slurry. Available correlations of gas holdup and heat transfer coefficients are examined on the basis of these data. These are found inappropriate and inadequate for representing these experimental data. Gas holdup data are well represented by an approach based on Nicklin's (1962) work, and heat transfer data are adequately represented by a simple semi-empirical expression. Accurate experimental data on additional systems are needed to develop a reliable heat transfer theory particularly for process representation at temperatures higher than ambient.  相似文献   

5.
Heat transfer coefficients have been measured from heat transfer tube bundles simulating heat exchanger configurations and surrounding two-phase and three-phase dispersions in a slurry bubble column. The tube bundles are comprised of a single tube, and five-, seven-, and thirty-seven tubes of 19 mm outer diameter. The Pyrex glass bubble column is 0.305 m internal diameter and 3.30 m tall and is heated electrically by internal heaters to temperatures in the range 298 to 353 K. Air, water and glass beads are used as gas, liquid and solid phases respectively. Heat transfer coefficients are measured for air-water, and air-water-glass bead systems as a function of air velocity up to about 0.3 m/s, and solids concentration up to about 30 weight percent in slurries of glass beads of average diameters 125, 168 and 212 μm at temperatures of 298, 323, 343 and 353 K. The nondimensional correlation available for heat transfer coefficient is also examined and modifications in its form are proposed on the basis of experimental data. Heat transfer coefficient values are compared with the predictions based on correlations due to Deckwer et al., Suh and Deckwer, Kim et al., and Pandit and Joshi. These correlations are inadequate and hence a semitheoretical correlation is proposed which synthesizes the data successfully. The influence of tube bundle size on heat transfer coefficient is discussed  相似文献   

6.
The effects of superficial gas velocity on heat transfer coefficient and its time-averaged radial profiles along the bed height have been investigated in a pilot-plant scale bubble column of 0.44 m diameter using air-water system. Notable differences were observed in heat transfer coefficients along the bed axial locations particularly between the sparger (Z/D = 0.28) and the fully developed flow (Z/D = 4.8) regions. In the fully developed flow region larger heat transfer coefficient values were obtained compared to those in the sparger region. About 14-22% increase in heat transfer coefficients measured in the fully developed flow region has been observed compared to those measured in the distributor region when the superficial gas velocity increases from 0.05 to 0.45 m/s. The heat transfer coefficients in the column center for all the conditions studied are about 9-13% larger than those near the wall region. It has been noted that in the fully developed flow region, the axial variation of the heat transfer coefficients was not significant.  相似文献   

7.
A simple experimental approach was developed to measure the gas phase volumetric heat and mass transfer coefficients in a bubble column and a slurry bubble column employing a single gas nozzle. The experimental technique was based on a transfer model that simulates humidification and direct contact evaporation models in the case of a gas bubble rising in a liquid of uniform temperature. The temperature and relative humidity of the inlet and outlet gas in the column are the only measurements required in this technique. Experiments were carried out in a 0.15 m inner diameter column using water as the liquid phase, air as the gas phase, and cation resins of 0.1 mm diameter and a specific gravity of 1.2, as the solid phase. The results showed that, when using solid concentrations in the range of 7–10 wt %, both the volumetric gas‐phase heat and mass transfer coefficients increased with an increase in the gas superficial velocity and were further enhanced by increasing the solid load after a certain minimum superficial velocity had been reached in the column (0.044 m/s in the system used). Increasing the solid load beyond 10 wt %, did not contribute to a further increase in these coefficients. Furthermore, the gas holdup in the column increased with the superficial gas velocity and was further enhanced when the solid‐phase load was in the range of 7–10 wt %. These observations agree well with previously reported findings by other investigators.  相似文献   

8.
A pilot‐scale (5.08 cm internal diameter) reciprocating plate column has been modified by the insertion of a brass test section for heat transfer measurements. Heat is supplied to liquid (water or a glucose solution) in the column from an electrical heating tape wound round the brass section, the walls of which contain thermocouples. Reciprocation of the plates in the column results in up to a seven‐fold improvement In heat transfer coefficient, to single phase liquids. Conditions are turbulent with oscillatory Reynolds numbers up to 20000. The effect of plate reciprocation is much less pronounced when the liquids are agitated by a stream of gas bubbles. The single‐phase heat transfer coefficients have been correlated for 5 different types of plates using approaches already available in the literature for turbulent systems in steady flow. The best‐fit oscillatory flow correlation differs slightly from the existing correlations for steady flow.  相似文献   

9.
Heat transfer coeffients between an immersed horizontal tube and an aerated vibrated fluldlzed bed are measured. There is a maximum value in the h-Г experlmental curve. The heat trander coefllcient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coetftclents. High smplltude and low frequency, or low amplitude and high frequency are favorable to heat transit. Exceedingly high gas veloclty is unfavorable to the surface-bed heat transfer. A model based on the ‘pocket‘ theory was proposed for predicting the surface-to-bed heat trausfer coefllclents in fully fluldlzed region. The predlctlons from the model were compared with observed data The reasonable fit suggests the adequacy of the model.  相似文献   

10.
提出了测试振动流化床与浸没水平管局部传热系数的新方法 ,就通气振动流化床与浸没水平管间的局部传热特性进行了实验研究 .结果表明 ,局部传热系数随水平管圆周位置而变 ,这种变化受流化气速、振动频率和振幅的影响 ,通气条件下达到最佳传热效果的振动强度比不通气时低 ,振动条件下达到最佳传热效果的流化气速比不振动时小 ,通气条件下振幅和频率对局部传热系数具有大致相同的影响趋势 .实验还表明 ,局部传热系数随颗粒粒径的增加而减小 .  相似文献   

11.
Heat transfer at the inner wall for co-current vertical air-water mixture flow has been investigated in a 161.5 mm diameter pumping tube of an air-lift system. The experimental heat transfer coefficients were found to be significantly higher than those calculated from a single liquid phase correlation for the same liquid flow rate. The enhancement of heat transfer was found to be related to the flow pattern. A decrease of the heat transfer coefficient was observed in the transition region from slug flow to churn flow. Hydrodynamic and heat transfer models have been used to describe heat transfer during the slug flow regime and a correlation is proposed for the heat transfer coefficient in the liquid plug behind the gas bubble.  相似文献   

12.
以空气-水-黄沙以及空气-液体石蜡-黄沙两种系统为对象,在常压下用溶氧仪研究了采用小孔式及金属烧结板两种分布器的高固含率三相淤浆反应器的气液传质特性,以及固含率和表观气速等因素对容积气液传质系数kLa的影响,最后得到采用上述两种气体分布器的高固含率三相淤浆床关于容积气-液传质系数的经验关联式。实验证明,金属烧结板具有更好的气液传质特性。  相似文献   

13.
Heat transfer coefficients between the bed and an immersed horizontal tube in the grid-region of a shallow gas-solid fluidized bed were experimentally and theoretically studied. Experiments were carried out in two fluidized bed columns with inside diameters of 88 and 137 mm, respectively. The fluidized particles tested were sand, limestone and glass beads. Experimental parameters also included particle size, superficial gas velocity, tube diameter, tube location and distributor design. A mechanistic model considering the contributions of jet phase, emulsion phase and dead phase was derived for estimating the grid-region heat transfer coefficients. Most of the model predictions were found to be within 25% of the experimentally observed data.  相似文献   

14.
Instantaneous and time-averaged local bed-to-wall heat transfer coefficients were measured in a 9.3 m tall, 152 mm ID cold model circulating fluidized bed riser at three different heights for 171 μm Ottawa sand at a superficial gas velocity of 7 m/s, and for solids circulation fluxes up to about 70 kg/m2.s. All data were obtained with an instantaneous heat transfer probe consisting of a thin platinum film deposited on a 1 cm2 piece of glass protected by a thin plastic film. Instantaneous heat transfer coefficients in the riser showed sudden and dramatic peaks caused by strands or sheets of particles sweeping past the probe. Consistent with previous work, time-averaged coefficients varied nearly linearly with suspension density. The heat transfer coefficient decreased from the bottom to the middle of the column, and then increased near the top due to an increase in suspension density for the exit geometry employed.  相似文献   

15.
Heat transfer in dense fluidized beds have been extensively studied. However, there is not much detailed information about the mechanism of surface-to-suspension heat transfer in the freeboard region. In the present work, a newly designed heating plate was used to measure the plate-surface-to-particle-suspension heat transfer coefficients in the freeboard.The experimental unit consisted of a 30 cm i.d. fluidized bed reactor packed with fluidized catalytic particles of mean particle size 90 μm. Three types of plate orientations were used to test directional effects of surface on heat transfer rate. Height of the freeboard was 171 cm, and the superficial gas velocity was varied from 0.28 to 0.64 m/s. Local solids concentrations in the freeboard were also obtained by a nozzle-type sampling probe. Data on axial distribution of solids concentration were used to find out the solids kinematics in the freeboard region. Finally, a surface-to-suspension heat transfer model was developed to elucidate the surface to particle heat transfer mechanism in this lean phase system.The model is based on the transient gas-convective heating of single particles when sliding over the heating plate and the assumption of instantaneous attachment–detachment equilibrium between particles and the plate surface.  相似文献   

16.
以正戊烷-水为物系,进行了采用填料强化的鼓泡塔直接接触蒸发换热实验。实验采用顺流操作,考察了分散相流量、温差以及分布器孔径对体积换热系数和汽化高度的影响。实验得出:在戊烷流量为23.868 L/h,分布器孔径为2.5 mm时加填料的鼓泡塔的体积换热系数约为未加填料的2倍;在一定的操作条件下,加填料的鼓泡塔中汽化高度随分散相流量和分布器孔径的增大而增加,随温差的增大而减小;加填料的鼓泡塔中体积换热系数随分散相流量的增加而增加,随分布器孔径的增大而减小,与温差成负幂指数关系。  相似文献   

17.
Heat transfer plays an important role in slurry bubble column reactors (SBCRs). Design of heat transfer equipments for SBCRs is a limiting step in sizing and scale up of them. In order to study the convection heat transfer coefficient (CHTC) in industrial SBCRs, a proper column was designed and manufactured in pilot scale with a special convection heat transfer coefficient measurement probe (CHTC MP). In this study, influence of effective parameters such as solid fraction, superficial gas velocity, radial and vertical position of the column was investigated on CHTC. The design of experiments was performed using a full factorial method including 31 × 22 × 91 = 108 experiments, to determine the main effects, binary and ternary interactions of variables. Study of the curvature functionality of CHTC versus gas velocity and effect of flow regime transition from homogeneous to heterogeneous flow was the other goal of this work. A statistical model including the main variables and their significant binary and ternary interactions was explained for CHTC with a good fitness with experimental data. Interactions of four effective parameters including solid fraction, superficial gas velocity, radial and vertical position of the column was studied for the first time in the SBCRs. A dimensionless correlation for local Stanton number was developed as a function of Pr, Re, Fr, non-dimensional radial position and non-dimensional distance from the sparger. Considering local positions in the correlation is a novel work and this correlation has good agreement with experimental data.  相似文献   

18.
The knowledge of the local gas–liquid slip velocity distribution can offer a better understanding for the complex transport phenomena in bubble columns. In this work, CFD–PBM simulations are carried out to investigate the effect of superficial gas velocities, axial positions, and scale of bubble columns on the time-averaged radial profiles of gas–liquid slip velocities. Furthermore, the relationship between local slip velocities and local heat transfer coefficients in pilot-scale bubble columns at superficial gas velocities of 0.05 m/s, 0.20 m/s, and 0.35 m/s is studied. The results indicate that the slip velocities decrease with the increase of r/R (r-radial position, R-column radius), while increase with increasing superficial gas velocities in general. In the fully developed region, the axial positions have small impact on the local slip velocities. A strong linear relation between heat transfer coefficients and slip velocities in the fully flow developed region is observed.  相似文献   

19.
本文在一高8m,直径186mm 的快速流化床中采用小型电加热探头测定了床层与换热面之间的局部传热系数,实验中通过将探头向上和向下设置考察了探头设置方向对局部传热系数的影响,实验表明探头在床中的设置方向不同将对传热系数的测定值产生一定的影响:另外在同一床层浓度下,操作气速和固体循环速率的变化将对传热系数产生直接的影响  相似文献   

20.
快速流化床床层与内浸表面间的传热特性实验研究   总被引:1,自引:1,他引:0  
白丁荣  金涌 《化工学报》1992,43(4):475-481
在内径186mm、高8m的快速流化床内,采用特殊设计的组合式传热探头,考察了局部传热系数沿换热表面长度方向的分布规律.结果表明,只要传热表面积足够大,设置于床层径向的任何位置,都可能诱导颗粒聚集,并在传热表面形成从上向下运动的絮状物层,从而使局部传热系数沿换热表面向下逐渐降低.实验结果预示,对具有较大尺寸的换热表面,影响传热系数的主要因素是局部颗粒密度及颗粒在表面的更新颇率.气体对传热的贡献主要是通过改变颗粒在传热表面的更新频率,影响颗粒非稳态导热过程而实现的.相比之下,气体对流传热的贡献可以忽略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号