首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

2.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

3.
A series of the 2-hydroxyethyl methacrylate/2-vinyl-l-pyridinium propane sulfonate (HEMA/VPPS) copolymeric gels have been prepared from HEMA and zwitterionic monomer VPPS of various molar ratios. The influence of the amount of VPPS in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures was investigated. Results indicate that the PHEMA hydrogels exhibit an overshooting phenomenon in their dynamic swelling behavior. The maximum overshooting value decreases with increasing temperature. The same results are also shown for the lower VPPS content HEMA/VPPS copolymeric gels. In the equilibrium swelling ratio, the PHEMA hydrogel exhibits a minimum swelling ratio at 55 °C. Then, the minimum swelling ratio disappears gradually with increasing VPPS content in HEMA/VPPS copolymeric gels. In the saline solution, the swelling ratios of HEMA/VPPS copolymeric gels increase rapidly with increasing salt concentration, for salts with a smaller ratio of charge/radius.  相似文献   

4.
A series of the 2-hydroxyethyl methacrylate/3-dimethyl-(methacryloyloxyethyl)ammonium propane sulfonate (HEMA/DMAPS) copolymeric gels was prepared from various molar ratios of HEMA and the zwitterionic monomer DMAPS. The influence of the amount of the zwitterionic monomer in the copolymeric gels on the swelling behaviors in water, various saline solutions, and temperature was investigated. The results indicate that the PHEMA hydrogel (D0) and lower DMAPS content of the HEMA/DMAPS copolymeric gel (D1) exhibit overshooting phenomena in the dynamic swelling behavior. The maximum overshooting value decreases with increase in temperature. In the equilibrium swelling ratio, the PHEMA hydrogel exhibits a minimum swelling ratio at 55°C. Then, the minimum swelling ratio diminishes gradually with increasing of the DMAPS content in the HEMA/DMAPS copolymeric gels. In the saline solution, the swelling ratios of HEMA/DMAPS copolymeric gels increase rapidly with increasing of concentration of the salt with a smaller ratio of the charge/radius. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2021–2034, 1998  相似文献   

5.
A series of pH–thermoreversible hydrogels are prepared from the three molar ratios of N-isopropylacrylamide (NIPAAm) and acrylic acid neutralized 50 mol % by sodium hydroxide (SA50) and N,N′-methylene bisacrylamide (NMBA). The influence of the environmental conditions, such as temperature and pH values, on the swelling behavior of these copolymeric gels is also investigated in this article. Results show that the hydrogels bearing negative charges exhibit different equilibrium swelling ratios under various pH media. The pH sensitivities of these gels also strongly depend on the molar ratio of SA50 in the copolymeric gels; thus, the more the SA50 content, the higher the gel pH sensitivity. These hydrogels exhibited thermosensitivity demonstrating a larger change of the equilibrium swelling ratio in aqueous media under temperature changes. An overshooting phenomenon is observed from the gel swelling kinetics under high-temperature conditions. The said hydrogels are also used to investigate the release of model drugs in this study. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1955–1967, 1999  相似文献   

6.
A series of thermosensitive hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm) and sodium‐2‐acrylamido‐2‐methylpropyl sulfonate (NaAMPS). Factors such as temperature and initial total monomer concentration and different pH solutions were investigated. Results indicated that the more the NaAMPS content in hydrogel system, the higher the swelling ratio and the gel transition temperature; the higher the initial monomer concentration, the lower the swelling ratio. The result also indicated that the NIPAAm/NaAMPS copolymeric hydrogels had different swelling ratios in various pH environments. The present gels showed a pH‐reversible property between pH 3 and pH 10 and thermoreversibility. The swelling ratios of copolymeric gels were lower in a strong alkaline environment because the gels were screened by counterions. Finally, the drug release behavior of these gels was also investigated in this article. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1760–1768, 2000  相似文献   

7.
A novel semi‐interpenetrating poly(2‐hydroxyethyl methacrylate) (pHEMA) based polyelectrolyte hydrogel [p(HEMA‐co‐METAC)/PEG] was prepared by copolymerizing HEMA with the cationic monomer 2‐methacryloyloxyethyltrimethyl ammonium chloride (METAC) in the presence of polyethylene glycol (PEG) with different content and molecular weight (MW 4000 and 400). The chemical structure of the gels was confirmed by FT‐IR spectroscopy, morphology study was performed by scanning electron microscope (SEM), thermal stability was revealed by thermogravimetric analysis (TGA), and the mechanical properties were determined by electronic universal testing machine. Swelling studies showed introduction of cationic monomer METAC led to high water content, and the obvious salt and pH sensitive properties were observed which proved the smart behavior of the semi‐interpenetrating polymer networks (IPNs) gels. In addition, the effect of temperature and some important biological solution on swelling behavior were reported. Cytotoxicity test demonstrated that synthesized gels owned satisfactory cytocompatibility and were convenient for the application as biomaterials. Finally, the weak bovine serum albumin (BSA) adsorption on semi‐IPNs by introducing METAC and controlling the content of PEG in gels demonstrated that they were of good protein resistance effect in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41537.  相似文献   

8.
The thermal behavior of poly(2‐hydroxyethyl methacrylate) [PHEMA] homopolymer and poly(2‐hydroxyethyl methacrylate‐co‐itaconic acid) [P(HEMA/IA)] copolymeric networks synthesized using a radiation‐induced polymerization technique was investigated by differential scanning calorimetry, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The glass‐transition temperature (Tg) of the PHEMA homopolymer was found to be 87°C. On the other hand, the Tg of the P(HEMA/IA) networks increased from 88°C to 117°C with an increasing amount of IA in the network system. The thermal degradation reaction mechanism of the P(HEMA/IA) networks was determined to be different from the PHEMA homopolymer, as confirmed by thermogravimetric analysis. It was observed that the initial thermal degradation temperature of these copolymeric networks increased from 271°C to 300°C with IA content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1602–1607, 2007  相似文献   

9.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N‐isopropylacrylamide, 1‐vinyl‐3‐(3‐sulfopropyl) imidazolium betaine (VSIB), and N,N′‐methylene‐bis‐acrylamide. The influence of the amount of VSIB in the copolymeric gels on the swelling behaviors in water, in various saline solutions, and at various temperatures was investigated. The results indicated that the higher the VSIB content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution the results showed that when the concentration of salt is higher than the minimum salt concentration (MSC) of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. In addition, only the sample containing 12 mol % VSIB (V4) exhibited an antipolyelectrolyte's swelling behavior when the concentration of salt was higher than the MSC of poly(VSIB). This means that the swelling ratio of the hydrogel can be improved with a higher concentration salt solution. In addition, the anion effects were larger than the cation effects in the presence of a common anion (Cl) with different cations and a common cation (K+) with different anions for the hydrogel. Finally, the more VSIB in the hydrogel, the higher the diffusion coefficient in dynamic swelling. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 14–23, 2000  相似文献   

10.
Copolymers of 2‐hydroxyethyl methacrylate (HEMA) and N‐vinyl‐2‐pyrrolidone (VP) and homopolymers of HEMA and VP were crosslinked in the presence of different mol% of melamine trimethacrylamide (MMAm) and melamine triacrylamide (MAAm) as crosslinkers by bulk radical polymerization. The resultant xerogels were characterized by extracting the soluble fractions and measuring the equilibrium water content. Lower critical solution transition temperatures (LCST) were measured by DSC. The properties of crosslinked HEMA and VP copolymers, VP and HEMA series were evaluated in terms of compositional drift of polymerization, heterogeneous crosslinking, and chemical structure of the relevant components. Soluble fractions of the crosslinked networks were reduced by varying the MAAm and MMAm concentrations. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. This behavior is explained on the basis that amide groups of VP or crosslinkers could be hydrolyzed to form negatively charged carboxylate ion groups in the produced networks in response to an external pH variation. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The swelling behavior for a series of NIPAAm/NaAMPS copolymeric hydrogels with polyelectrolytic and thermosensitive properties was investigated in various saline solutions. The swelling ratios for the present copolymeric hydrogels were affected by the saline solution, which is the result of the neutralization of the cations in the external solution with the negative charges on the polymeric side chains. The adsorption of aniline by the gels increased when the temperature was higher than the gel transition temperature, and this result showed that, when the gels were in hydrophobic state, the hydrophobic organic molecules were more easily adsorbed onto the gels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1675–1684, 2001  相似文献   

12.
Three series of thermosensitive copolymeric hydrogels were prepared from [3‐(methacryloyloxy)propyl]trimethoxysilane (MPTMOS), [2‐(methacryloyloxy)ethoxy]trimethylsilane (METMS), and (methacryloyloxy)trimethylsilane (MTMS), referred to as the silane monomer, and N‐isopropylacrylamide (NIPAAm) by solution polymerization. The influence of the structures and amounts of silane monomers on the swelling and drug‐released behaviors were studied. The results showed that, because of the hydrophobicity of the silyl group, the more silane monomers in the copolymeric hydrogels the lower was the swelling ratio of the gels. The hydrophobicity of the silyl group affected the swelling mechanism, which resulted from the non‐Fickian diffusion for the gels. The copolymeric gels clearly exhibited gel transition temperatures. The copolymeric hydrogels could be applied to a drug‐release and drug‐delivery system. The delivery amount would approach a steady state after three cycle operations of delivery. The gels also showed an on–off switch behavior on drug release depending on the temperature, and the gels released more CV with the gels in a swollen state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2523–2532, 2002  相似文献   

13.
Reversible addition–fragmentation chain‐transfer polymerization was introduced to prepare a series of zwitterionic poly(hydroxyethyl methacrylate)‐g‐poly(sulfobetaine methacrylate) (PSBMA) hydrogels (HSGs) with different monomer feed ratios. Compared with PSBMA hydrogels, these hydrogels exhibited enhanced mechanical strengths. Then, the HSGs were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and swelling measurements. We found that the equilibrium swelling ratios, mechanical strengths, and drug‐release behaviors were significantly affected by the feed ratios of the gels. The hydrophilic tetracycline hydrochloride release results suggest that the hydrophilic drug release from the HSGs could be prolonged by the variation of the hydroxyethyl methacrylate amount in the gel networks. The bovine serum albumin adsorption data showed that the zwitterionic HSG with 18.2 wt % sulfobetaine methacrylate exhibited good protein‐resistance properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41041.  相似文献   

14.
The aim of this work was to synthesize and to characterize new pH‐sensitive hydrogels that can be used in the controlled release of drugs, useful for dermal treatments or ophthalmology's therapies. Copolymers containing 2‐hydroxyethyl methacrylate (HEMA) with different amounts of 2‐(diisopropylamino)ethyl methacrylate (DPA) (10 and 30 wt %) and different amounts of crosslinker agent, ethylene glycol dimethacrylate (EGDMA) (1 and 3 wt %) were prepared by bulk photo‐polymerization. The copolymers were fully characterized by using Fourier‐transform infrared (FTIR) spectra, differential scanning calorimetry, thermogravimetric analysis, UV–visible spectroscopy, and measuring water content and dynamic swelling degree. The results show that modifications in the amount of DPA and/or crosslinker in the hydrogel produce variations in the thermal properties. When adding of DPA, we observed an increase in the thermal stability and decomposition temperature, as well as a change in the mechanism of decomposition. Also a decrease in the glass transition temperature was observed with regard to the value for pure pHEMA, by the addition of DPA. The water content of the hydrogels depends on the DPA content and it is inversely proportional to both the pH value and the crosslinking degree. Pure poly‐HEMA films did not show important changes over the pH range studied in this work. The dynamic swelling curves show the overshooting effect associated with the incorporation of DPA, the pH of the solution, and the crosslinking density. On the other hand, no important variations in the optical properties were observed. The synthesized hydrogels are useful as a drug delivery pH‐sensitive matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
This work reports the preparation of 2‐hydroxyethyl methacrylate (HEMA)/N‐vinyl‐2‐pyrrolidone (NVP) interpenetrating polymer network (IPN) hydrogels by UV‐initiated polymerization in the presence of free radical photoinitiator Darocur 1173 and cationic photoinitiator 4,4′‐dimethyl diphenyl iodonium hexafluorophosphate. The polymerization mechanism was investigated by the formation of gel network. The structure and morphology of the HEMA/NVP IPN hydrogels were characterized by fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The results showed that the IPN gels exhibited homogeneous morphology. The dehydration rates of HEMA/NVP IPN hydrogels were examined by the gravimetric method. The results revealed that the hydrogels had a significant improvement of antidehydration ability in comparison with poly(2‐hydroxyethyl methacrylate)(PHEMA) hydrogel embedded physically with poly(N‐vinyl‐2‐pyrrolidone)(PVP). © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

17.
A series of copolymeric hydrogels were prepared from various molar ratios of N‐isopropylacrylamide (NIPAAm), trimethyl acrylamidopropyl ammonium iodide (TMAAI), and 3‐dimethyl (methacryloyloxyethyl) ammonium propane sulfonate (DMAPS). Results showed that the swelling ratios of these copolymeric hydrogels increased with an increase of TMAAI content. The drug release behavior of the ionic thermosensitive hydrogels related to their ionicity and drug types. Results indicated that the release ratio of caffeine in the hydrogels was not affected by the ionicity of hydrogels, but increased with increasing of the swelling ratio. The anionic solute (phenol red) strongly interacted with cationic hydrogel (very large Kd), so the phenol red release ratio in cationic gels was very low. On the other hand, CV was adsorbed only on the skin layer of the cationic hydrogel because of the charge repulsion, and released rapidly. Therefore the release ratio was highest for cationic hydrogel to cationic drug. In addition, the partition coefficients (Kd) and the drug delivery behavior of the present gels were also investigated. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1592–1598, 2002  相似文献   

18.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A series of thermosensitive hydrogels were prepared from the various molar ratios of N‐isopropylacrylamide, zwitterionic monomer, N,N′‐dimethyl (acrylamidopropyl) ammonium propane sulfonate (DMAAPS), and N,N′‐methylene‐bis‐acrylamide. The influence of the amount of DMAAPS in the copolymeric gels on the swelling behaviors in water, various saline solutions, and various temperatures was investigated. Results indicated that the higher the DMAAPS content in the hydrogel system, the higher the swelling ratio and the gel transition temperature. In the saline solution results showed that, when the salt concentration was greater than the minimum salt concentration (MSC) of poly(DMAAPS), the deswelling behavior of the N‐isopropylacrylamide gel was suppressed more effectively when more DMAAPS was added into the copolymeric gels; but the swelling ratios of the present copolymeric gels did not significantly change while the salt concentration was lower than the MSC of poly(DMAAPS). In addition, only the sample containing 12 mol % DMAAPS (D4) exhibited an antipolyelectrolyte's swelling behavior when the salt concentration was greater than the MSC of poly(DMAAPS). In other words, only when the amount of DMAAPS added into the gel is over some proportion, can the hydrogel show an antipolyelectrolyte's swelling behavior in concentrated salt solution. In saline solutions, the anion effects were greater than the cation effects in the presence of common anion (Cl) with different cations and common cation (K+) with different cations for these gels. Finally, the more DMAAPS content in the hydrogel, the higher the diffusion coefficient in dynamic swelling. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2170–2180, 1999  相似文献   

20.
A series of random copolymers of acrylamide and N‐vinylimidazole, poly(AAm‐co‐NVI), with various compositions were prepared using redox copolymerization. The influence of environmental conditions such as pH, temperature, and ionic strength on the swelling behavior of the copolymeric hydrogels was investigated. The hydrogels exhibited the highest equilibrium swelling in basic medium at high temperature. Equilibrium swelling decreased with rising ionic strength at pH 5.0. As pH increased, equilibrium swelling of the hydrogels increased at pH 11.0 and I = 0.20 M. Swelling kinetics of the hydrogels was found to be non‐Fickian at 25°C. The process tended to be Fickian at higher pH and temperature. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1783–1788, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号