首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the variability of skin colour measurements for two kinds of extensively used instruments, telespectroradiometers (TSR) and spectrophotometers. A Konica Minolta CM700d spectrophotometer and a PhotoResearch PR650 telespectroradiometer were used to measure the forehead and the cheekbone of 11 subjects. The variability was evaluated using different measurement parameters including measurement aperture size and pressure on the facial locations for the spectrophotometer, and measurement distance for the telespectroradiometer. The mean colour difference from the mean was used to define the short‐term repeatability; the CIELAB colour difference and colour appearance changes in each perceptual CIELAB attribute between each of two instrument settings were used to evaluate the inter‐instrument agreement. The results show that, for the TSR, different measurement distances have identical repeatability but the colour shifts were significant; for the spectrophotometer, the large aperture size of the target masks gave the most repeatable results and the aperture size had more influence on the colour shifts than the measurement pressure. In addition, to investigate the effect of ethnicity and body location on measurement variability, skin colours from additional 151 subjects were measured. The differences between the measurements for different body locations were, in general, larger than the instrument repeatability and the inter‐instrument agreement.  相似文献   

2.
Skin‐tone has been an active research subject in photographic colour reproduction. There is a consistent conclusion that preferred skin colours are different from actual skin colours. However, preferred skin colours found from different studies are somewhat different. To have a solid understanding of skin colour preference of digital photographic images, psychophysical experiments were conducted to determine a preferred skin colour region and to study inter‐observer variation and tolerance of preferred skin colours. In the first experiment, a preferred skin colour region is searched on the entire skin colour region. A set of nine predetermined colour centers uniformly sampled within the skin colour ellipse in CIELAB a*b* diagram is used to morph skin colours of test images. Preferred skin colour centers are found through the experiment. In a second experiment, a twice denser sampling of nine skin colour centers around the preferred skin colour center determined in the first experiment are generated to repeat the experiment using a different set of test images and judged by a different panel of observers. The results from both experiments are compared and final preferred skin colour centers are obtained. Variations and hue and chroma tolerances of the observer skin colour preference are also analysed. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2013  相似文献   

3.
An aesthetic measure based approach for constructing a colour design/selection system is proposed in this article. In this model, an image data base for the relationships between the psychological preference of customers and clothing colour tones is built using the membership functions of a fuzzy set, and an aesthetic measure calculation method based on colour harmony is also proposed. In addition, a skin colour detection theory is proposed to construct a skin colour detection program to detect the skin colour of a customer, which is then taken as the major colour in matching the skin, polo shirt, and(or) pant colours to select the best colour combination. Integrating the skin colour detection theory, colour harmony theory, aesthetic measure method, and fuzzy set theory, a program is constructed to build an aesthetic measure based colour design/selection system. With the aid of this system, one can get proper cloth colours to match his/her skin colour and image requirement by starting with inputting one's colour photo, catching image with a camera, or inputting R, G, B values of his/her skin. The theoretical results for the ranks of clothing colours proposed by the system are examined with the experimental results and the result shows they are very close, suggesting that the proposed colour selection system is acceptable. Although the selection of clothing colours is taken as an example to specify the methodology, it can also be used to develop a system for other products. © 2008 Wiley Periodicals, Inc. Col Res Appl, 33, 411–423, 2008  相似文献   

4.
Two psychophysical experiments were carried out to investigate whether or not colour emotion responses would change with the advance of the viewer's age. Two forms of stimuli were used: 30 single colours (for Experiment 1) and 190 colour pairs (for Experiment 2). Four word pairs, warm/cool, heavy/light, active/passive, and like/dislike, were used to assess colour emotion and preference in Experiment 1. In Experiment 2, harmonious/disharmonious was also used in addition to the four scales for Experiment 1. A total of 72 Taiwanese observers participated, including 40 (20 young and 20 older) for Experiment 1 and 32 (16 young and 16 older) for Experiment 2. The experimental results show that for single colours, all colour samples were rated as less active, less liked, and cooler for older observers than for young observers. For colour combinations, light colour pairs were rated as less active and cooler for older observers than for young observers; achromatic colour pairs and those consisting of colours in similar chroma were rated as cooler, less liked and less harmonious for older observers than for young observers. The findings may challenge a number of existing theories, including the adaptation mechanism for retaining consistent perception of colour appearance across the lifespan, the modeling of colour emotion based on relative colour appearance values, and the additive approach to prediction of colour‐combination emotion. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

5.
We have compared corresponding pairs obtained by simultaneous matching (haploscopic matching) and by memory matching (after 10 min) using 34 reference tests selected from the Munsell Atlas (glossy), belonging to the four main hues 5Y, 5G, 5PB, and 5RP. These colours lie very close to the F1 and F2 axes in the SVF space, where we have analyzed our results. Illuminants D65 and A were used as reference and matching illuminants, respectively. Our results show for both kinds of matching a tendency to select more colourful colours than the original ones, with significant differences between matching and test colours, whereas hue does not seem to follow a definite pattern. This behavior is similar to that found in colour‐matching experiments without illuminant changes. The analogy does not hold for lightness, which in the present experiment does not seem to follow a clear pattern. The best matching colours lie along the red‐green axis and the worst matching colours along the blue‐yellow axis. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 458–468, 2001  相似文献   

6.
Colour remains one of the key factors in presenting an object and, consequently, has been widely applied in retrieval of images based on their visual contents. However, a colour appearance changes with the change of viewing surroundings, the phenomenon that has not been paid attention yet while performing colour‐based image retrieval. To comprehend this effect, in this article, a chromatic contrast model, CAMcc, is developed for the application of retrieval of colour intensive images, cementing the gap that most of existing colour models lack to fill by taking simultaneous colour contrast into account. Subsequently, the model is applied to the retrieval task on a collection of museum wallpapers of colour‐rich images. In comparison with current popular colour models including CIECAM02, HSI and RGB, with respect to both foreground and background colours, CAMcc appears to outperform the others with retrieved results being closer to query images. In addition, CAMcc focuses more on foreground colours, especially by maintaining the balance between both foreground and background colours, while the rest of existing models take on dominant colours that are perceived the most, usually background tones. Significantly, the contribution of the investigation lies in not only the improvement of the accuracy of colour‐based image retrieval but also the development of colour contrast model that warrants an important place in colour and computer vision theory, leading to deciphering the insight of this age‐old topic of chromatic contrast in colour science. © 2014 Wiley Periodicals, Inc. Col Res Appl, 40, 361–373, 2015  相似文献   

7.
Simultaneous contrast effects on lightness and hue in surface colours were investigated. Test colours, surrounded by induction colours, were matched by colours surrounded by neutral gray. The matching colours were selected from a series of samples that varied in either lightness or hue respectively. The lightness experiments were carried out by a panel of 20 observers on 135 test/induction colour combinations. The hue experiments were conducted on 51 test/induction colour combinations by a panel of eight observers. The lightness of the test colour was found to decrease linearly with the lightness of the induction colour, regardless of the hue of the induction colour. The magnitude of the lightness contrast effect in fabric colours was found to be about one‐quarter of that found in CRT display colours in a previous study. The hue contrast effect found in this study followed the opponent‐colour theory. Two distinctly different regions could be identified when the hue difference was plotted against hue‐angle difference between the induction colour and the test colour. The slope of the line in the region where the hue of the induction colour is close to the test colour was much larger than the slope in the other region, indicating that the hue contrast effect was more obvious when the induction colour was close to the test colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 55–64, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20285  相似文献   

8.
Dichromatic colour vision is commonly believed to be a reduced form of trichromatic colour vision (referred to as the reductionist principle). In particular, the colour palette of the dichromats is believed to be a part of the colour palette of the trichromats. As the light‐colour palette differs from the object‐colour palette, the dichromatic colour palettes have been derived separately for light‐colours and object‐colours in this report. As to light‐colours, the results are in line with the widely accepted view that the dichromatic colour palettes contain only two hues. However, the dichromatic object‐colour palettes have proved to contain the same six component colours which constitute the trichromatic object‐colour palette (yellow, blue, red, green, black and white). Moreover, all the binary and tertiary combinations of the six component colours present in the trichromatic object‐colour palette also occur in the dichromatic object‐colour palettes. Yet, only five of the six component colours are experienced by dichromats as unitary (unique) object‐colours. The green unitary colour is absent in the dichromatic object‐colour palettes. The difference between the dichromatic and trichromatic object‐colour palettes arises from the fact that not every combination of the component‐colour magnitudes occurs in the dichromatic object‐colour palettes. For instance, in the dichromatic object‐colour palettes there is no colour with the strong green component colour. Furthermore, each achromatic (black or white) component colour of a particular magnitude is combined with the only combination of the chromatic components. In other words, the achromatic component colours are bound with the chromatic component combinations in dichromats. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 112–124, 2014  相似文献   

9.
Perceived colour differences of 17 test colour samples (uniform standalone patches) were evaluated visually between a test and a reference light source on three visual scales. Two graphical rating scales (a greyscale‐anchored colour difference scale and a similarity judgement scale) and a five‐step ordinal rating scale (excellent, good, acceptable, not acceptable or very bad colour rendering) were used. The experimental setup included tungsten halogen, gas discharge, fluorescent, and white LED light sources at two correlated colour temperatures, 2700 and 4500 K. There was an inverse relationship between similarity judgement and visual colour difference results. Each category of the five‐step ordinal rating scale had a characteristic mean visual colour difference value. Visual colour differences correlated best with the recently developed CIECAM02‐UCS colour difference metric. Latter metric was used to predict the observers' ratings of visual colour differences on the above five‐step ordinal rating scale. From the predicted ratings of 17 test‐colour samples under the test light source, a new ordinal rating scale based colour rendering index (RCRI) was defined and compared with previous colour rendering indices. RCRI correlated well with both the mean visual colour differences and the mean similarity judgements. Despite the significant interobserver differences of the visual assessment of colour differences, the RCRI method showed an overall performance of 73% in terms of good predictions of the rating categories. Validation experiments with complex still life (tabletop) stimuli are currently underway. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

10.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

11.
In recent studies, contextual situations of applied colours are compared to colours presented as samples or chips. Findings of such studies point out different results in terms of similarities or differences between the evaluations of isolated/abstract colours and contextualized situations. Architectural and spatial contexts have their own characteristics regarding colouring criteria, so it is of great importance to examine the architectural/spatial colouring process from this point of view. This study explores this process by investigating the consistency of semantic ratings of four sequential stages of the architectural colour design process, namely, colour chips/samples, abstract compositions, perspective drawings and 3D models. The architectural context for the study was a simple interior space. Fifteen different colour schemes were applied on the four media representing the stages. Subjects rated the 15 sets against seven bipolar, five‐step semantic differential scales. The scales consisted of harmonious‐discord, pleasant‐unpleasant, comfortable‐uncomfortable, spacious‐confined, static‐dynamic, exciting‐calming and extroverted‐introverted. Findings indicated that there are significant associations between the evaluations of the abstract compositions, the perspective drawings and the 3D models; however, the evaluations of colour chips are significantly different than the others. The medium effect observed mostly between abstract and contextualized media. Additionally, factor analysis showed that pleasantness, harmony, spaciousness and comfort are connected in the evaluations of contextual situations, while pleasantness and harmony differ from spaciousness and comfort in the evaluations of colour chips and abstract compositions. The factor of activity (arousal) (dynamism, excitement, and extroversion) stays the same for all four media. It is also found that different colour characteristics are determinative over different media. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

12.
CIE has recommended two previous appearance models, CIECAM97s and CIECAM02. However, these models are unable to predict the appearance of a comprehensive range of colours. The purpose of this study is to describe a new, comprehensive colour appearance model, which can be used to predict the appearance of colours under various viewing conditions that include a range of stimulus sizes, levels of illumination that range from scotopic through to photopic, and related and unrelated stimuli. In addition, the model has a uniform colour space that provides a colour‐difference formula in terms of colour appearance parameters. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 293–304, 2017  相似文献   

13.
In this study three colour preference models for single colours were developed. The first model was developed on the basis of the colour emotions, clean–dirty, tense–relaxed, and heavy–light. In this model colour preference was found affected most by the emotional feeling “clean.” The second model was developed on the basis of the three colour‐emotion factors identified in Part I, colour activity, colour weight, and colour heat. By combining this model with the colour‐science‐based formulae of these three factors, which have been developed in Part I, one can predict colour preference of a test colour from its colour‐appearance attributes. The third colour preference model was directly developed from colour‐appearance attributes. In this model colour preference is determined by the colour difference between a test colour and the reference colour (L*, a*, b*) = (50, ?8, 30). The above approaches to modeling single‐colour preference were also adopted in modeling colour preference for colour combinations. The results show that it was difficult to predict colour‐combination preference by colour emotions only. This study also clarifies the relationship between colour preference and colour harmony. The results show that although colour preference is strongly correlated with colour harmony, there are still colours of which the two scales disagree with each other. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 381–389, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20047  相似文献   

14.
During the colour perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is known as colour emotion. In Part I of this study, a quantitative analysis of the cross‐regional differences and similarities of colour emotions as well as the influence of hue, lightness, and chroma on the colour emotions of the subjects from Hong Kong, Japan, and Thailand, was carried out. In Part II, colour emotions of the subjects in any two regions were compared directly using colour planners showing the effect of the lightness and the chroma of colours. The colour planners can help the designers to understand the taste and feelings of the target customers and facilitate them to select suitable colours for the products that are intended to be supplied in different regions. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 458–466, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20063  相似文献   

15.
Psychophysical experiments were conducted to investigate the colour appearance changes between small colour patches and real room colours. The results clearly showed that colours appear lighter and more colourful for room colours. A method based on CIECAM02 was developed to quantify the colour size effect. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

16.
This article classifies colour emotions for single colours and develops colour‐science‐based colour emotion models. In a psychophysical experiment, 31 observers, including 14 British and 17 Chinese subjects assessed 20 colours on 10 colour‐emotion scales: warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike. Experimental results show no significant difference between male and female data, whereas different results were found between British and Chinese observers for the tense–relaxed and like–dislike scales. The factor analysis identified three colour‐emotion factors: colour activity, colour weight, and colour heat. The three factors agreed well with those found by Kobayashi and Sato et al. Four colour‐emotion models were developed, including warm–cool, heavy–light, active–passive, and hard–soft. These models were compared with those developed by Sato et al. and Xin and Cheng. The results show that for each colour emotion the models of the three studies agreed with each other, suggesting that the four colour emotions are culture‐independent across countries. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 232–240, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20010  相似文献   

17.
Psychophysical experiments of colour appearance, in terms of lightness, colourfulness, and hue, were conducted outdoors and indoors to investigate whether there was any difference in colour appearance between outdoor and indoor environments. A panel of 10 observers participated in the outdoor experiment, while 13 observers took part in the indoor experiment. The reference white had an average luminance of 12784 cd/m2 in the outdoor experiment and 129 cd/m2 in the indoor experiment. Test colours included 42 colour patches selected from the Practical Coordinate Color System to achieve a reasonable uniform distribution of samples in CIECAM02. Experimental results show that for both outdoor and indoor environments, there was good agreement between visual data and predicted values by CIECAM02 for the three colour appearance scales, with the coefficient of variation values all lower than 25 and the R2 values all higher than 0.73, indicating little difference in the three dimensions of colour appearance between indoor and outdoor viewing conditions. Experimental data also suggest that the observers were more sensitive to variation in lightness for grayish colours than for highly saturated colours, a phenomenon that seems to relate with the Helmholtz-Kohlrausch effect. This phenomenon was modeled for predicting perceived lightness (J′) using the present experimental data. The new J′ model was tested using three extra sets of visual data obtained both outdoors and indoors, showing good predictive performance of the new model, with an average coefficient of variation of 14, an average R2 of 0.88, and an average STRESS index of 14.18.  相似文献   

18.
This study aimed to investigate the differences in colour naming between the English (British) and Mandarin (Taiwanese) languages. A constrained method was employed, with 20 British and 20 Chinese adults. All the experiments were conducted under an artificial daylight, using 1526 colours from the Natural Color System (NCS). Each subject was asked to find the colour(s) corresponding to basic names, modifiers, and secondary names in terms of one colour (focal colour) or a colour region (colour volume). Little difference in chromaticness and hue was found between the two languages, but a systematic discrepancy was found in blackness. Because this could have been caused by different surrounds, i.e., gray and white walls used for the British and Chinese experiments, respectively, a verification experiment was carried out using a panel of ten Taiwanese subjects against a gray surround. The results proved that the lightness difference found earlier was indeed caused by the surround. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 193–208, 2001  相似文献   

19.
This study compares semantic ratings of colour samples (chips) with those of the same colours applied to a variety of objects. In total, 25 participants took part in the colour‐meaning experiment, and assessed 54 images using five semantic scales. In Experiment 1, simplified images (coloured silhouettes) were used whereas in Experiment 2 real images were used. In this article, the terms “chip meaning” and “context meaning” are used for convenience. Chip meaning refers to the associated meanings when only isolated colour chips were evaluated while context meaning refers to colour meanings evaluated when colours were applied to a variety of product categories. Analyses were performed on the data for the two experiments individually. The results of Experiment 1 show relatively few significant differences (28%) between chip meaning and context meaning. However, differences were found for a number of colours, objects, and semantic scales i.e., red and black; hand wash and medicine; and masculine‐feminine and elegant‐vulgar. The results of Experiment 2 show more significant differences (43%) between chip meaning and context meaning. In summary, the context sometimes affects the colour meaning; however, the degree to which colour meanings are invariant to context is perhaps slightly surprising. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 450–459, 2017  相似文献   

20.
Deciding a colour for a product is a significant task for designers to attract consumer attention and communicate brand messages. It requires an initial analysis that explores consumer expectations within the sector, and this information is then used to inform development of a product design. This article discusses the application of the product colour development process during the initial phase of product design. Using a case study approach, one particular product category—a dishwashing liquid product was selected based on the suggestion from a leading U.K. consumer goods manufacturing company that colour is a major design factor for this product category. In the first phase of the study, interviews and an online survey were carried out with consumers (to explore what elements are important when they purchase a washing‐up liquid product). In the second phase of the study, a colour meaning experiment was conducted to explore possible colours for dishwashing liquid packaging using a semantic differential method. The results show that yellowish and bluish green colours evoke positive responses while saturated and dark green colours are perceived more negatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号