首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work falls into the category of linear cellular neural network (CNN) implementations. We detail the first investigative attempt on the CMOS analog VLSI implementation of a recently proposed network formalism, which introduces time‐derivative ‘diffusion’ between CNN cells for nonseparable spatiotemporal filtering applications—the temporal‐derivative CNNs (TDCNNs). The reported circuit consists of an array of Gm‐C filters arranged in a regular pattern across space. We show that the state–space coupling between the Gm‐C‐based array elements realizes stable and linear first‐order (temporal) TDCNN dynamics. The implementation is based on linearized operational transconductance amplifiers and Class‐AB current mirrors. Measured results from the investigative prototype chip that confirms the stability and linearity of the realized TDCNN are provided. The prototype chip has been built in the AMS 0.35 µm CMOS technology and occupies a total area of 12.6 mm sq, while consuming 1.2 µW per processing cell. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a synthesis method developed in the last few years is applied to derive a cellular non‐linear network (CNN) able to find an approximate solution to a variational image‐fusion problem. The functional to be minimized is based on regularization theory and takes into account two complementary principles, namely, knowledge source corroboration and belief enhancement/withdrawal, both typical of data‐fusion approaches. The obtained CNN has been tested by simulations (i.e. by numerically integrating the circuit state equations) in some case studies. The quality of the results is good, as turns out from comparisons with some standard methods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper a new approach to fragile watermarking technique is introduced. This problem is particularly interesting in the field of modern multimedia applications, when image and video authentication are required. The approach exploits the cellular automata suitability to work as pseudorandom pattern generators and extends the related algorithms under the framework of the cellular non‐linear networks (CNNs). The result is a novel way to perform watermarking generation in real time, using the presently available CNN‐universal chip prototypes. In this paper, both the CNN algorithms for fragile watermarking as well as on‐chip experimental results are reported, confirming the suitability of CNNs to successfully act as real‐time watermarking generators. The availability of CNN‐based visual microprocessors allows to have powerful algorithms to watermark in real time images or videos for efficient smart camera applications. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
This paper presents a cellular neural network (CNN) scheme employing a new non‐linear activation function, called trapezoidal activation function (TAF). The new CNN structure can classify linearly non‐separable data points and realize Boolean operations (including eXclusive OR) by using only a single‐layer CNN. In order to simplify the stability analysis, a feedback matrix W is defined as a function of the feedback template A and 2D equations are converted to 1D equations. The stability conditions of CNN with TAF are investigated and a sufficient condition for the existence of a unique equilibrium and global asymptotic stability is derived. By processing several examples of synthetic images, the analytically derived stability condition is also confirmed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
We report on the design and characterization of a full‐analog programmable current‐mode cellular neural network (CNN) in CMOS technology. In the proposed CNN, a novel cell‐core topology, which allows for an easy programming of both feedback and control templates over a wide range of values, including all those required for many signal processing tasks, is employed. The CMOS implementation of this network features both low‐power consumption and small‐area occupation, making it suitable for the realization of large cell‐grid sizes. Device level and Monte Carlo simulations of the network proved that the proposed CNN can be successfully adopted for several applications in both grey‐scale and binary image processing tasks. Results from the characterization of a preliminary CNN test‐chip (8×1 array), intended as a simple demonstrator of the proposed circuit technique, are also reported and discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a vertebrate retina model is described based on a cellular neural network (CNN) architecture. Though largely built on the experience of previous studies, the CNN computational framework is considerably simplified: first‐order RC cells are used with space‐invariant nearest‐neighbour interactions only. All non‐linear synaptic connections are monotonic continuous functions of the pre‐synaptic voltage. Time delays in the interactions are continuous represented by additional first‐order cells. The modelling approach is neuromorphic in its spirit relying on both morphological and pharmacological information. However, the primary motivation lies in fitting the spatio‐temporal output of the model to the data recorded from biological cells (tiger salamander). In order to meet a low‐complexity (VLSI) implementation framework some structural simplifications have been made. Large‐neighbourhood interaction (neurons with large processes), furthermore inter‐layer signal propagation are modelled through diffusion and wave phenomena. This work presents novel CNN models for the outer and some partial models for the inner (light adapted) retina. It describes an approach that focuses on efficient parameter tuning and also makes it possible to discuss adaptation, sensitivity and robustness issues on retinal ‘image processing’ from an engineering point of view. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The paper considers a feedback cellular neural network (CNN) obtained by interconnecting elementary cells with an ideal capacitor and an ideal flux‐controlled memristor. It is supposed that during the analogue computation of the CNN the memristors behave as dynamic elements, so that each dynamic memristor (DM)‐CNN cell is described by a second‐order differential system in the state variables given by the capacitor voltage and the memristor flux. The proposed networks are called DM‐CNNs, that is CNNs using a dynamic (D) memristor (M). After giving a foundation to the DM‐CNN model, the paper establishes a fundamental result on complete stability, that is convergence of solutions toward equilibrium points, when the DM‐CNN has symmetric interconnections. Because of the presence of dynamic memristors, a DM‐CNN displays peculiar and basically different dynamic properties with respect to standard CNNs. First of all a DM‐CNN computes during the time evolution of the memristor fluxes, instead of the capacitor voltages as for a standard CNN. Furthermore, when a steady state is reached, the memristors keep in memory the result of the computation, that is the limiting values of the fluxes, while all memristor currents and voltages, as well as all currents, voltages, and power in the DM‐CNN vanish. Instead, for standard CNNs, currents, voltages, and power do not drop off when a steady state is reached. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents implementation of a chaotic cellular neural network (CNN)‐based true random number generator on a field programmable gate array (FPGA) board. In this implementation, discrete time model of the chaotic CNN is used as the entropy source. Random number series are generated for three scenarios. Obtained number series are tested by using NIST 800.22 statistical test suite. Also, the scale index technique is carried out for these three scenarios to determine the degree of non‐periodicity for key stream. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we face the problem of model reduction in piecewise‐linear (PWL) approximations of non‐linear functions. The reduction procedure presented here is based on the PWL approximation method proposed in a companion paper and resorts to a strategy that exploits the orthonormality of basis functions in terms of a proper inner product. Such a procedure can be favourably applied to the synthesis of the resistive parts of cellular non‐linear networks (CNNs) to reduce the complexity of the resulting circuits. As an example, the method is applied to a case study concerning a CNN for image processing. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the problem of identification of the network parameters and the desired equilibrium in applications of excitation control for synchronous generators. Our main contribution is the construction of a new non‐linear identifier that provides asymptotically consistent estimates (with guaranteed transient bounds) of the line impedance and the equilibrium for the classical three‐dimensional flux‐decay model of a single generator connected to an infinite bus. This model is non‐linear, and non‐linearly parameterized, and the equilibria depend also non‐linearly on the unknown parameters. The proposed estimator can be used, adopting a certainty equivalent approach, to make adaptive any power system stabilizer that relies on the knowledge of these parameters. The behaviour of the scheme is illustrated in two simulated case studies with the interconnection and damping assignment passivity‐based controller recently proposed by the authors. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
We investigate the application of a model‐free linear quadratic Gaussian (LQG) subspace‐based predictive controller to Internet congestion control. Specifically, we consider a classically designed LQG linear congestion controller with a non‐standard performance index and determine whether a model‐free controller is a viable alternative in this instance. We employ the model‐free subspace predictive controller methodology which we customize for end‐to‐end transmission control protocol (TCP) congestion control. A series of network simulations support the use of the more easily implementable model‐free controller over its classical analogue. We further demonstrate that the model‐free controller provides increased stability under transient network conditions when compared with the first feedback congestion controller, TCP Vegas. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we review and extend our recent works based on the Monte Carlo method to solve the Wigner-Boltzmann transport equation and model semiconductor nanodevices. After presenting the different possible approaches to quantum mechanical modelling, the formalism and the theoretical framework are described together with the particle Monte Carlo implementation using a technique fully compatible with semiclassical simulation. Examples are given to highlight the importance of considering both quantum and scattering effects in nanodevices operating at room temperature, such as resonant tunnelling diode (RTD), double-gate MOSFET and carbon nanotube FET. Quantum and semiclassical approaches are compared for transistor simulation. Finally, the phonon-induced electron decoherence in RTD and MOSFET is examined through the analysis of the density matrix elements computed from the Wigner function. This formalism is shown to be relevant for the quantitative analysis of devices operating in mixed quantum/semiclassical regime and to understand the transition between both regimes or between coherent and sequential tunnelling processes.  相似文献   

14.
通过绕组函数理论对直线同步电动机进行分析,提出一种基于卷积神经网络(CNN)的直线同步电动机故障诊断方法。从直线同步电动机的数学模型出发,基于绕组函数理论对电动机正常状态和匝间短路故障状态进行仿真,对电流波形图进行快速傅里叶变换(FFT)得到不同状态的数据集。利用CNN中的GoogLeNet网络结构,在保持网络空间维度的同时不增加故障诊断的计算量。将数据集输入到网络模型进行故障诊断,仿真结果表明GoogLeNet网络结构对直线同步电动机电枢绕组的短路故障识别率达到了96.5%以上。  相似文献   

15.
This paper presents image thinning algorithms using cellular neural networks (CNNs) with one‐ or two‐dimensional opposite‐sign templates (OSTs) as well as non‐unity gain output functions. Two four‐layer CNN systems with one‐dimensional (1‐D) OSTs are proposed for image thinning with 4‐ or 8‐connectivity, respectively. A CNN system, which consists of an eight‐layer CNN with two‐dimensional (2‐D) OSTs followed by another four‐layer CNN with 2‐D OSTs, is constructed for image thinning with 8‐connectivity, in which designs of B‐ and I‐templates are simpler than in CNNs with 1‐D OSTs. In the aforementioned designs, parameter values of 1‐D OSTs are chosen to make CNNs operate with thinning‐like property 1 (TL‐1), and those of 2‐D OSTs with 2‐D thinning‐like property (2‐DTL). Simulation studies show that these CNN systems have a good image thinning performance. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Cellular neural networks or CNNs are a novel neural network architecture introduced by Chua and Yang which is very general and flexible, has some important properties desirable for design applications and can be efficiently implemented on custom hardware based on analogue VLSI technology. In this paper an abstract normalized definition of cellular neural networks with arbitrary interconnection topology is given. Instead of stability, the property of convergence is found to be of central importance: large classes of convergent CNNs in practice always asymptotically approach some stable equilibrium where each component of the corresponding output is binary-valued. A highly efficient CMOS-compatible CNN circuit architecture is then presented where a basic cell consists of only two fully differential op amps, two capacitors and several MOSFETs, while a variable interconnection weight is realized with only four MOSFETs. Since all these elements are standard components in the current analogue IC technology and since all network functions are implemented directly on the device level, this architecture promises high cell and interconnection densities and extremely high operating speeds.  相似文献   

17.
A new hybrid TLM‐FDTD algorithm for solving diffusion problems is described. The method utilizes the transmission line model to define the time step and the FDTD's leap‐frog algorithm to determine the voltages and currents of the network analogue of the diffusion equation. Unlike the standard TLM method, the proposed one does not generate spurious oscillations. The method is explicit and can be used to solve highly non‐linear problems without the need to solve non‐linear equations. The implementation of a simple adaptive time‐stepping algorithm is also described. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Biologically inspired control of artificial locomotion often makes use of the concept of central pattern generator (CPG), a network of neurons establishing the locomotion pattern within a lattice of neural activity. In this paper a new approach, based on cellular neural networks (CNNs), for the design of CPGs is presented. From a biological point of view this new approach includes an approximated chemical synapse realized and implemented in a CNN structure. This allows to extend the results, previously obtained with a reaction‐diffusion‐CNN (RD‐CNN) for the locomotion control of a hexapod robot, to a more general class of artificial CPGs in which the desired locomotion pattern and the switching among patterns are realized by means of a spatio‐temporal algorithm implemented in the same CNN structure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a new algorithm for the cellular active contour technique called pixel‐level snakes is proposed. The motivation is twofold: on the one hand, a higher efficiency and flexibility in the contour evolution towards the boundaries of interest are pursued. On the other hand, a higher performance and suitability for its hardware implementation onto a cellular neural network (CNN) chip‐set architecture are also required. Based on the analysis of previous schemes the contour evolution is improved and a new approach to manage the topological transformations is incorporated. Furthermore, new capabilities in the contour guiding are introduced by the incorporation of inflating/deflating terms based on the balloon forces for the parametric active contours. The entire algorithm has been implemented on a CNN universal machine (CNNUM) chip set architecture for which the results of the time performance measurements are also given. To illustrate the validity and efficiency of the new scheme several examples are discussed including real applications from medical imaging. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
The paper presents the universal approach to the determination of the sensitivity functions for dynamic neural networks and its application in learning algorithms of adaptive networks. The method is based on the application of signal flow graph and specially defined graph adjoint to it. The method is equally applied to either feed‐forward or recurrent network structures. This paper is mainly concerned with neural network applications of the approach. Different kinds of dynamic neural networks are considered and discussed in the paper: the FIR dynamic multilayer perceptron (MLP), the cascade connection of dynamic MLPs as well as two non‐linear recurrent systems: the dynamic recurrent MLP network and ARMA recurrent network. The rule of sensitivity determination has been applied in practical learning of neural networks. Chosen results of numerical experiments concerning the application of this approach to the learning processes of recurrent neural networks are also given and discussed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号