首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为找出用于三维激光点云数据的处理方法,本文基于无人机装载激光扫描仪技术,以粒子群算法优化极限学习机(ELM)算法(PSO-ELM),得出最新算法处理点云数据,并与ELM模型计算结果对比,结果表明:PSO-ELM模型最优隐含层个数为50,在此情况下模型精度最高;PSO-ELM算法的处理效果明显更好,其生成的DEM和地形数...  相似文献   

2.
自适应混沌粒子群算法对极限学习机参数的优化   总被引:1,自引:0,他引:1  
陈晓青  陆慧娟  郑文斌  严珂 《计算机应用》2016,36(11):3123-3126
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSO-ELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。  相似文献   

3.
提出了一种基于改进极限学习机(ELM,extreme learning machine)神经网络的煤矿井下人员定位算法,针对测距模型易受井下复杂环境干扰,无法准确测距的问题,选用基于指纹的位置匹配模型;使用极限学习机将指纹和位置进行匹配,选用改进鲸鱼优化算法(IWOA,improved whale optimization algorithm)选取ELM合适的输入权值和隐含层阈值,以提高定位精度。在定位的在线阶段,将新的指纹数据代入带动态权值因子的在线顺序极限学习机(DOS-ELM,dynamic weight factor online sequential extreme learning machine)模型对定位模型进行动态调整,以克服电磁传播环境变动使定位结果产生的误差;仿真实验结果表明,该模型的定位误差在1.5 m以内的置信概率为72%,平均定位误差为1.64 m,与其他算法的实验结果相比,文章算法鲁棒性强,定位精度高。  相似文献   

4.
《软件》2016,(12):17-20
研究MBR膜通量,进行膜污染预测,是当今污水处理研究领域的重要课题之一。为了有效,准确地预测MBR膜通量,提出一种改进的极限学习机(PSO-ELM)预测模型。极限学习机(ELM)能够有效地克服反向传播(BP)算法的缺陷,并能以极快的速度获得很好的泛化性能。由于随机给定输入权值和隐层阈值,ELM通常需要较多隐含层节点才能达到理想精度。利用粒子群算法(PSO)对极限学习机(ELM)的权值和阈值进行优化,建立PSO-ELM预测模型,将提取的主成分作为该模型的输入,膜通量作为模型输出。研究结果表明,该模型对MBR膜通量预测具有较好的泛化能力和更高的预测精度。  相似文献   

5.
设计了一种基于低频(LF)唤醒技术和极限学习机(ELM)分类算法的无线定位系统.实现了低频唤醒、射频应答的电路结构和通信回路,实现了有源应答器的超低待机监听.通过比较各类型的多种射频定位算法,选用基于ELM分类的定位算法,对低频唤醒接收信号强度指示(RSSI)数据进行分类并实现定位,有效降低了定位算法在线阶段的计算量,在单片机系统中实现了实时定位计算.测试结果表明:定位系统在有效范围内定位精度可达15 cm,定位正确率可达95%以上,在定位精度和稳定性方面明显优于超高频(UHF)频段射频定位系统.  相似文献   

6.
针对浆体管道临界淤积流速预测难度大、精度低等问题,提出了粒子群优化—极限学习机(PSO-ELM)的临界淤积流速预测模型.利用PSO算法对ELM模型参数输入权值和隐元偏置进行优化,应用优化得到的ELM模型对预测集进行预测.通过实验仿真得到预测结果的最大误差为5.73%,预测效果优于常规的ELM模型和反向传播(BP)神经网络模型.  相似文献   

7.
超宽带技术因其具有定位精度高、抗多径干扰能力强、传输速率高等优势,成为了当前主流的室内定位技术。由于地铁隧道中环境恶劣,为了保证施工人员的安全,实现对地铁隧道中施工人员的实时定位,设计了基于UWB技术的地铁隧道定位系统。该系统采用对称双向双边测距(SDS-TWR,Symmetric Double-Sided Two-Way Ranging)算法以有效抑制移动标签和定位基站之间由于晶振漂移导致的测距误差,同时在基于到达时间(TOA,Time of Arrival)的定位方法上采用粒子群算法提高定位精度。实验结果表明基于UWB的地铁隧道定位系统在地铁隧道中能稳定工作且定位精度得到有效的提高,该系统具有功耗低、实现简单、定位精度高的特点,能够满足地铁隧道当中对于人员实时精确定位的需求。  相似文献   

8.
提高红外目标模拟器校准数据的拟合精度,对于红外目标的辐射照度等辐射特性的测量有着重要意义;针对校准数据具有很强的非线性,传统的拟合算法精度不高的问题,引入一种基于粒子群算法优化的极限学习机算法(PSO-ELM),以标准黑体辐射温度作为输入因子,以MCT探测器实际测量出的辐射照度作为输出因子,建立PSO-ELM模型,利用粒子群算法(PSO)对连接隐藏神经元和输入层的权值和隐藏神经元阈值进行优化,拟合出输入参数和输出参数之间的非线性关系;这两个参数的优化提高了极限学习机算法(ELM)的性能,该方法的主要优点是具有较强的容错性、较好的对复杂非线性数据处理性能和ELM算法参数设置上的优化机制;通过与GA-ELM模型、ELM模型进行对,验证了与传统数据拟合方法相比,基于PSO-ELM的方法拟合精度有了很大提高,为红外目标模拟器校准数据拟合提供了新的方法。  相似文献   

9.
差分全球定位系统(DGPS)是一种精确的定位系统,但在室内或有障碍物的情况下,其定位精度很低甚至不能进行定位。超宽带(UWB)定位系统在室内有很高的定位精度,但受其测量范围的影响,不适合室外定位。将DGPS和UWB结合定位,利用Kalman滤波器对UWB非视距误差(NLOS)进行消除,采用粒子滤波器对不同传感器进行数据融合,并使用GPRS通信模块进行无线数据传输。实验表明:该方法能够使系统整体定位精度提高19%,既能满足室内外无缝定位,又具有很高的定位精度。  相似文献   

10.
一种优化极限学习机的果园湿度预测方法   总被引:1,自引:0,他引:1  
针对传统水蜜桃种植过程中环境监测实时性差、人力物力浪费严重的现状,通过无线传感网络技术(WSN),本文果园环境监测系统的基础上提出一种优化极限学习机的湿度预测方法(PSO-ELM),该方法首先使用主成分分析法(PCA)对环境监测数据进行分析,实现数据的降维,然后利用粒子群算法(PSO)优化极限学习机(ELM)的初始权值、偏置,对训练集和测试集分别进行测试,以果园环境监测系统中9天(1296组)数据为测试对象,将PSO-ELM算法与线性回归、ELM神经网络进行对比,验证预测方法的可靠性。实验结果表明,该预测算法的RMSE、MAPE和 MAE分别为0.5038、0.0051和 0.3974,能较好的预测环境湿度信息。  相似文献   

11.
为了减小非视距(NLOS) 误差对超宽带(UWB) 室内定位系统定位精度的影响,提出了一种基于卷积神经网络 (CNN)的超宽带室内定位算法。利用超宽带系统采集非视距环境下的室内定位数据,根据信号在非视距环境下传播时的误差特性建立CNN模型,将定位数据输入网络进行训练,以减小NLOS误差对定位精度的影响。然后用扩展卡尔曼滤波(EKF) 进行位置估计,当系统处于不同室内环境时,使用在线学习算法调整 CNN参数,提高系统的兼容性。实验结果表明,该算法可以在不同室内环境下有效减小NLOS误差的影响,保持厘米级的定位精度,具有一定的实用价值。  相似文献   

12.
当前全球导航卫星系统与激光雷达的数据融合被广泛应用于无人驾驶车辆的定位系统中,但在室内环境下由于卫星信号的丢失导致定位精度低甚至无法定位。为此提出一种基于超宽带(Ultra-Wideband,UWB)与激光雷达(Light Detection and Ranging,LiDAR)的融合定位算法。该算法以粒子滤波为基础,对两个传感器的定位数据进行互补融合解算。利用UWB实时定位数据通过提供起始粒子范围的方式来提高LiDAR的定位速率。通过求解LiDAR定位信息与粒子之间的几何距离来更新粒子的权重,从而弥补UWB的非视距误差。搭建一个室内测试场景,并将融合定位算法在智能小车平台上进行验证。实验结果表明,该方法优于UWB或LiDAR单一传感器的定位方案,而且在UWB视距受阻或LiDAR匹配失效的情况下,车辆仍能够获得良好的定位精度和定位实时性。  相似文献   

13.
针对目前国内室内定位领域的需求,提出一种基于UWB的室内定位系统实现方案,充分利用UWB带宽大、定位精度高的优点,实现室内三维定位和追踪。系统通过TOA方法,测量UWB标签与多个UWB基站之间的距离,位置解析服务器通过串口读取测距信息。采用基于四UWB基站的三维空间定位算法,计算定位目标在室内三维空间的位置,并通过WiFi发送位置至用户手机端。手机端通过OpenGL ES加载三维室内地图,并动态接收从服务器端发送的定位目标位置,从而实现室内三维定位与追踪。系统测试表明,基于上述方案的室内定位系统具有较高的精度和实用性。  相似文献   

14.
针对传统室内指纹定位算法存在定位精度低、对环境适应能力差的问题,提出了一种基于并行混沌优化的在线连续极限学习机(PCOS-ELM)定位算法.离线阶段,通过并行混沌优化算法(PCOA)对极限学习机的隐含层节点参数进行寻优并构建高精度初始定位模型;在线阶段,利用在线连续极限学习机(OS-ELM)使新增位置指纹数据对定位模型进行动态调整,以适应室内环境的变化.结果表明:提出的PCOS-ELM定位算法具有更高的定位精度和更好的环境适应性.  相似文献   

15.
矿山排土场滑坡的过程是一个动态、大延迟、高度非线性的特性问题,影响矿山排土场滑坡的因素众多,各个特性指标间相互影响,关于排土场滑坡预警并没有严格的划分标准。对此,提出一种自适应提升算法(Adaptive Boosting, AdaBoost)、改进的粒子群算法(Particle Swarm Optimization, PSO)和极限学习机(Extreme Learning Ma chine, ELM)相结合的矿山排土场滑坡短期预测方法。该方法首先利用粒子群优化算法得出ELM模型的最佳输入参数,再通过自适应提升算法将得到的多个极限学习机弱预测器组成新的强预测器并进行预测,最后以某矿山排土场采集的数据为算例,结果表明改进的组合方法的预测精度明显优于由粒子群优化算法优化参数的极限学习机模型和单独的极限学习机模型的预测精度,其预测结果接近于真实值,为实现矿山排土场滑坡预警提供了可能。  相似文献   

16.
为了提高机器人的定位精度,对传统的基于神经网络的机器人精度补偿方法进行改进。采用两种基于粒子群优化的极限学习机(PSO-ELM)模型的精度补偿方法对机器人关节坐标及直角坐标进行补偿。分别对两种方法进行仿真实例分析,并与遗传算法优化的极限学习机(GA-ELM)模型进行对比。仿真结果表明,对直角坐标进行补偿的PSO-ELM机器人精度补偿法优于其他补偿方法,且具有较高的预测精度。  相似文献   

17.
通过分析当前常用室内定位技术和实施优缺点,引入UWB(Ultra Wide Band,超宽带)定位模块,分析了UWB室内定位系统的原理以及设备上的实现方案,从定位精度和定位动态性能两方面进行关键性技术研究,改进了基于单一方法的定位技术。针对定位精度问题,根据人体下肢运动过程中的对称性特点改进现有的行人航迹推算算法。针对定位动态性能问题,引入惯性导航定位模块,将改进的PDR算法与UWB定位方法进行融合,通过实验测量说明,使用TOA跟踪算法响应速度较快,设计的UWB室内定位系统具有小于5cm的室内定位精度,重复精度小于1cm。  相似文献   

18.
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。  相似文献   

19.
针对网络安全态势预测模型预测精度不高、收敛较慢等问题,提出了一种基于改进粒子群优化极限学习机(IPSO-ELM)算法的预测方法。首先,通过改进粒子群优化(PSO)算法中的惯性权重和学习因子来实现两种参数随着迭代次数增加的自适应调整,使PSO初期搜索范围大、速度高,后期收敛能力强、稳定。其次,针对PSO易陷入局部最优的问题,提出一种粒子停滞扰动策略,将陷入局部最优的粒子重新引导至全局最优飞行。改进粒子群优化(IPSO)算法既保证了全局寻优的能力,又对局部搜索能力有所增强。最后,将IPSO与极限学习机(ELM)结合来优化ELM的初始权值及阈值。与ELM相比,结合IPSO的ELM的预测精度提高了44.25%。实验结果表明,与PSO-ELM相比,IPSO-ELM的预测结果拟合度可达到0.99,收敛速度提升了47.43%。所提算法在预测精度和收敛速度等指标上明显优于对比算法。  相似文献   

20.
针对UWB定位性能易受障碍物遮挡、非视距干扰的问题,提出了一种新的UWB指纹匹配定位算法。该算法利用基站与各定位标签之间的距离信息建立指纹库,并在KNN定位算法的基础上,引入了模糊推理方法,通过模糊规则处理得到待定位节点与k个参考节点的匹配度,把该匹配度作为权值对KNN算法进行加权,获得初始定位,同时,创新性地提出了位置优化阈T,根据阈值T和初始定位结果与k参考节点的欧式距离大小,判断是否进行二次模糊加权处理。测试显示,该算法定位误差保持在10cm左右,并且和一次模糊推理的加权KNN算法比较,优化算法定位精度提高了17.8%,提高了UWB室内定位的精确度和稳健性  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号