首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 755 毫秒
1.
The influence of inorganic and organic supporting electrolytes on the electrochemical, optical, and conducting properties of poly(o‐anisidine), poly(o‐toluidine), and poly(o‐anisidine‐coo‐toluidine) thin films was investigated. Homopolymer and copolymer thin films were synthesized electrochemically, under cyclic voltammetry conditions, in aqueous solutions of inorganic acids (H2SO4, HCl, HNO3, H3PO4, and HClO4) and organic acids (benzoic acid, cinnamic acid, oxalic acid, malonic acid, succinic acid, and adipic acid) at room temperature. The films were characterized by cyclic voltammetry, ultraviolet–visible spectroscopy, and conductivity measurements with a four‐probe technique. The ultraviolet–visible spectra were obtained ex situ in dimethyl sulfoxide. The optical absorption spectra indicated that the formation of the conducting emeraldine salt (ES) phase took place in all the inorganic electrolytes used, whereas in organic acid supporting electrolytes, ES formed only with oxalic acid. Moreover, the current density and conductivity of the thin films was greatly affected by the nature and size of the anion present in the electrolyte. For the copolymer, the conductivity lay between the conductivity of the homopolymers, regardless of the supporting electrolyte used. The formation of the copolymer was also confirmed with differential scanning colorimetry. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2634–2642, 2003  相似文献   

2.
Achievement of high conductivity and electrochemical window at ambient temperature for an all‐solid polymer electrolyte used in lithium ion batteries is a challenge. Here, we report the synthesis and characterization of a novel solid‐state single‐ion electrolytes based on comb‐like siloxane copolymer with pendant lithium 4‐styrenesulfonyl (perfluorobutylsulfonyl) imide and poly(ethylene glycol). The highly delocalized anionic charges of ? SO2? N(–)? C4F9 have a weak association with lithium ions, resulting in the increase of mobile lithium ions number. The designed polymer electrolytes possess ultra‐low glass transition temperature in the range from ?73 to ?54 °C due to the special flexible polysiloxane. Promising electrochemical properties have been obtained, including a remarkably high conductivity of 3.7 × 10?5 S/cm and electrochemical window of 5.2 V (vs. Li+/Li) at room temperature. A high lithium ion transference number of 0.80, and good compatibility with anode were also observed. These prominent characteristics endow the polymer electrolyte a potential for the application in high safety lithium ion batteries. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45848.  相似文献   

3.
This work deals with the resolution of DL ‐menthol with propionic acid by Candida cylindracea lipase (Ccl) in organic solvent reaction systems and a reverse micelles system of sodium 1,4‐bis (2‐ethylhexyl) sulfosuccinate (AOT). The activity and stability as well as enantioselectivity of the lipase in two systems were studied. The results indicate that the lipase showed higher stability in reverse micelles than in organic solvent, which proved that the reverse micelles system has potential application for maintaining the activity of the enzyme for a long time. This is because lipase molecules can be entrapped in water‐containing micro‐drops of reverse micelles, avoiding direct‐contract with unfavorable organic medium. The enantioselectivity (E > 30, eep = 92.5) in the two systems is relatively high, although the conversion is moderate. The influence of the characteristic parameters of the two systems, such as pH, temperature, w0 (molar ratio of water to AOT in reverse micelles systems) and water content (organic solvent) on the conversion of DL ‐menthol was also investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

4.
Solvents and electrolytes play an important role in the fabrication of dye‐sensitized solar cells (DSSCs). We have studied the poly(ethylene oxide)‐poly(methyl methacrylate)‐KI‐I2 (PEO‐PMMA‐KI‐I2) polymer blend electrolytes prepared with different wt % of the 2‐mercaptopyridine by solution casting method. The polymer electrolyte films were characterized by the FTIR, X‐ray diffraction, electrochemical impedance and dielectric studies. FTIR spectra revealed complex formation between the PEO‐PMMA‐KI‐I2 and 2‐mercaptopyrindine. Ionic conductivity data revealed that 30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2 electrolyte can show higher conductivity (1.55 × 10?5 S cm?1) than the other compositions (20, 40, and 50%). The effect of solvent on the conductivity and dielectric of solid polymer electrolytes was studied for the best composition (30% 2‐mercaptopyridine‐doped PEO‐PMMA‐KI‐I2) electrolyte using various organic solvents such as acetonitrile, N,N‐dimethylformamide, 2‐butanone, chlorobenzene, dimethylsulfoxide, and isopropanol. We found that ac‐conductivity and dielectric constant are higher for the polymer electrolytes processed from N,N‐dimethylformamide. This observation revealed that the conductivity of the solid polymer electrolytes is dependent on the solvent used for processing and the dielectric constant of the film. The photo‐conversion efficiency of dye‐sensitized solar cells fabricated using the optimized polymer electrolytes was 3.0% under an illumination of 100 mW cm?2. The study suggests that N,N‐dimethylformamide is a good solvent for the polymer electrolyte processing due to higher ac‐conductivity beneficial for the electrochemical device applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42489.  相似文献   

5.
The electrochemical hydrogenation of soybean oil with supercritical carbon dioxide (SC‐CO2) has been studied to seek ways for substantial reduction of the trans fatty acids (TFA). The solubility of CO2 in electrolytes and the conductivity of electrolytes were investigated using a self‐made electrochemical hydrogenation reactor. The optimum hydrogenation parameters were assessed. Both the solubility of CO2 in electrolytes and the conductivity of electrolytes increased with increasing CO2 pressure. When the pressure reached a critical point of CO2, the solubility of CO2 expressed as a mole fraction was 0.42 in cathode electrolyte and 0.1 in anode electrolyte. At 8 MPa, the conductivity of electrolytes was 1.5 times higher than that at 2 MPa. When the pressure was higher than the critical point of CO2, the solubility of CO2 in electrolytes and the conductivity of electrolytes reached a stable value. The optimum condition for electrochemical hydrogenation of soybean oil in SC‐CO2 were reaction pressure (8 MPa), reaction temperature (48 °C), current (125 mA), agitation speed (300 rpm), and reaction time (8 h). Fatty acid profile, iodine value, and TFA content were evaluated at the optimum parameters. This investigation showed that the electrochemical hydrogenation of soybean oil in SC‐CO2 was improved. The reaction time was shortened by 4 h, and TFA content was reduced by 35.8% compared to traditional hydrogenation process.  相似文献   

6.
The extension of electrocatalytic reaction of I?/I3? from counter electrode/gel electrolyte interface to gel electrolyte can significantly enhance the redox kinetics and therefore conversion efficiency of dye‐sensitized solar cells. Microporous gel electrolyte from polypyrrole integrated poly(hydroxyethyl methacrylate/cetytrimethylammonium bromide) [PPy‐integrated poly (HEMA/CTAB)] is successfully synthesized by in‐situ polymerization of pyrrole monomers in three‐dimensional framework of porous poly(HEMA/CTAB) matrix. An ionic conductivity of 12.72 mS cm?1 and activation energy of 8.65 kJ mol?1 are obtained from PPy‐integrated poly(HEMA/CTAB) gel electrolyte. Tafel polarization and electrochemical impedance spectroscopy are employed to characterize the electrocatalytic behaviors of the gel electrolytes. The resultant quasi‐solid‐state dye‐sensitized solar cell shows a light‐to‐electrical conversion efficiency of 6.68%. POLYM. ENG. SCI., 54:2531–2535, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Highly porous poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVdF–HFP)‐based polymer membranes filled with fumed silica (SiO2) were prepared by a phase‐inversion technique, and films were also cast by a conventional casting method for comparison. N‐Methyl‐2‐pyrrolidone as a solvent was used to dissolve the polymer and to make the slurry with SiO2. Phase inversion occurred just after the impregnation of the applied slurry on a glass plate into flowing water as a nonsolvent, and then a highly porous structure developed by mutual diffusion between the solvent and nonsolvent components. The PVdF–HFP/SiO2 cast films and phase‐inversion membranes were then characterized by an examination of the morphology, thermal and crystalline properties, absorption ability of an electrolyte solution, ionic conductivity, electrochemical stability, and interfacial resistance with a lithium electrode. LiPF6 (1M) dissolved in a liquid mixture of ethylene carbonate and dimethyl carbonate (1:1 w/w) was used as the electrolyte solution. Through these characterizations, the phase‐inversion polymer electrolytes were proved to be superior to the cast‐film electrolytes for application to rechargeable lithium batteries. In particular, phase‐inversion PVdF–HFP/SiO2 (30–40 wt %) electrolytes could be recommended to have optimum properties for the application. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 140–148, 2006  相似文献   

8.
We report the synthesis of all‐solid‐state polymeric electrolytes based on electrospun nanofibers. These nanofibers are composed of polyethylene oxide (PEO) as the matrix, lithium perchlorate (LiClO4) as the lithium salt and propylene carbonate (PC) as the plasticizer. The effects of the PEO, LiClO4 and PC ratios on the morphological, mechanical and electrochemical characteristics were investigated using the response surface method (RSM) and analysis of variance test. The prepared nanofibrous electrolytes were characterized using SEM, Fourier transform infrared, XRD and DSC analyses. Conductivity measurements and tensile tests were conducted on the prepared electrolytes. The results show that the average diameter of the nanofibers decreased on reduction of the PEO concentration and addition of PC and LiClO4. Fourier transport infrared analysis confirmed the complexation between PEO and the additives. The highest conductivity was 0.05 mS cm?1 at room temperature for the nanofibrous electrolyte with the lowest PEO concentration and the highest ratio of LiClO4. The optimum nanofibrous electrolyte showed stable cycling over 30 cycles. The conductivity of a polymer film electrolyte was 29 times lower than that of the prepared nanofibrous electrolyte with similar chemical composition. Furthermore, significant fading in mechanical properties was observed on addition of the PC plasticizer. The results obtained imply that further optimization might lead to practical uses of nanofibrous electrolytes in lithium ion batteries. © 2019 Society of Chemical Industry  相似文献   

9.
A blend of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (PSAN) has been evaluated as a composite polymer electrolyte by means of differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy, ac impedance measurements, and linear sweep voltammetry (LSV). The blends show an interaction with the Li+ ions when complexed with lithium perchlorate (LiClO4), which results in an increase in the glass‐transition temperature (Tg) of the blends. The purpose of using PSAN as another component of the blend is to improve the poor mechanical properties of PMMA‐based plasticized electrolytes. The mechanical property is further improved by introducing fumed silica as inert filler, and hence the liquid electrolyte uptake and ionic conductivity of the composite systems are increased. Room‐temperature conductivity of the order of 10?4 S/cm has been achieved for one of the composite electrolytes made from a 1/1 blend of PSAN and PMMA containing 120% liquid electrolyte [1M LiClO4/propylene carbonate (PC)] and 10% fumed silica. These systems also showed good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1319–1328, 2001  相似文献   

10.
Poly(vinylidene fluoride‐co‐hexafluoropropylene) (P(VDF‐HFP)) based composite polymer electrolyte (CPE) membranes were successfully prepared by electrospinning followed by electrophoretic deposition processes, and desirable polymer electrolytes were obtained after being activated in liquid electrolytes. The physicochemical properties of the CPEs with different electrophoretically deposited nano‐SiO2 contents were investigated by SEM, XRD, TGA, linear sweep voltammetry and electrochemical impedance spectroscopy measurements. When the ratio of electrophoretically deposited nano‐SiO2 to P(VDF‐HFP) is up to 4 wt%, the results show that the CPE membrane presents a very uniform surface with abundant interconnected micropores and possesses excellent mechanical tensile strength with high thermal and electrochemical stability; the ionic conductivity at room temperature can reach 3.361 mS cm?1 and the reciprocal temperature dependence of the ionic conductivity follows a Vogel ? Tamman ? Fulcher relationship. The interfacial resistance of the assembled Li/CPE/Li simulated cell can rapidly increase to a steady value of about 950 Ω from the initial value of about 700 Ω at 30 °C during 15 days' storage. The battery performance test suggests that the CPE also shows excellent compatible properties with commercial LiCoO2 and graphite materials. © 2015 Society of Chemical Industry  相似文献   

11.
All‐solid‐state lithium‐ion electrolytes offer substantial safety benefits compared to flammable liquid organic electrolytes. However, a great challenge in solid electrolyte batteries is forming a stable and ion conducting interface between the electrolyte and active material. This study investigates and characterizes a possible solid‐state electrode‐electrolyte pair for the high voltage active cathode material LiMn1.5Ni0.5O4 (LMNO) and electrolyte Li1+xAlxGe2‐x(PO4)3 (LAGP). In situ X‐ray diffraction measurements were taken on pressed pellets comprised of a blend of LMNO and LAGP during exposure to elevated temperatures to determine the product materials that form at the interface of LMNO and LAGP and the temperatures at which they form. In particular, above 600°C a material consistent with LiMnPO4 was formed. Scanning electron microscopy and energy‐dispersive X‐ray spectroscopy were used to image the morphology and elemental compositions of product materials at the interface, and electrochemical characterization was performed on LMNO‐coated LAGP electrolyte pellet half cells. Although the voltage of Li/LAGP/LMNO assembled batteries was promising, thick interfacial phases resulted in high electrochemical resistance, demonstrating the need for further understanding and control over material processing in the LAGP/LMNO system to reduce interfacial resistance and improve electrochemical performance.  相似文献   

12.
In the last years, the ionic liquid system formed by specific mixtures of 1‐ethyl‐3‐methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (EMIM[Tf2N]) and AlCl3 proved to be a very suitable electrolyte for the electrodeposition of aluminum. In order to establish an industrial electrodeposition process based on this novel electrolyte system, the suitability of melt crystallization for purification and recycling of these electrolytes has been studied. It exists a composition range in the ternary system where the compound EMIM[AlCl4] can be crystallized in a high purity. The layer melt crystallization technique is successfully applied to the binary system EMIMCl‐AlCl3 and to the real ternary electrolytes. Hydrolysis is proposed for treatment of the residue. In aqueous solutions, the membrane process nanofiltration is applied for concentration and recovery of the ionic components. An integral recycling concept is presented.  相似文献   

13.
Polymer electrolyte membranes composing of corn starch as host polymer, lithium perchlorate (LiClO4) as salt, and barium titanate (BaTiO3) as composite filler are prepared using solution casting technique. Ionic conductivity is enhanced on addition of BaTiO3 by reducing the crystallinity and increasing the amorphous phase content of the polymer electrolyte. The highest ionic conductivity of 1.28 × 10?2 S cm?1 is obtained for 10 wt % BaTiO3 filler in corn starch‐LiClO4 polymer electrolytes at 75°C. Glass transition temperature (Tg) of polymer electrolytes decreases as the amount of BaTiO3 filler is increased, as observed in differential scanning calorimetry analysis. Scanning electron microscopy and thermogravimetric analysis are employed to characterize surface morphological and thermal properties of BaTiO3‐based composite polymer electrolytes. The electrochemical properties of the electric double‐layer capacitor fabricating using the highest ionic conductivity polymer electrolytes is investigated using cyclic voltammetry and charge‐discharge analysis. The discharge capacitance obtained is 16.22 F g?1. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43275.  相似文献   

14.
Two types of micro‐tubular hollow fiber SOFCs (MT‐HF‐SOFCs) were prepared using phase inversion and sintering; electrolyte‐supported, based on highly asymmetric Ce0.9Gd0.1O1.95(CGO) HFs and anode‐supported based on co‐extruded NiO‐CGO(CGO)/CGO HFs. Electroless plating was used to deposit Ni onto the inner surfaces of the electrolyte‐supported MT‐HF‐SOFCs to form Ni‐CGO anodes. LSCF‐CGO cathodes were deposited on the outer surface of both these MT‐HF‐SOFCs before their electrochemical performances were compared at similar operating conditions. The performance of the anode‐supported MT‐HF‐SOFCs which delivered ca. 480 mW cm–2 at 600 °C was superior to the electrolyte‐supported MT‐HF‐SOFCs which delivered ca. six times lower power. The contribution of ohmic and electrode polarization losses of both FCs was investigated using electrochemical impedance spectroscopy. The electrolyte‐supported MT‐HF‐SOFCs had significantly higher ohmic and electrode polarization ASR values; this has been attributed to the thicker electrolyte and the difficulties associated with forming quality anodes inside the small (<1 mm) lumen of the electrolyte tubes. Further development on co‐extruded anode‐supported MT‐HF‐SOFCs led to the fabrication of a thinner electrolyte layer and improved electrode microstructures which delivered a world leading 2,400 mW cm–2. The newly made cell was investigated at different H2 flow rates and the effect of fuel utilization on current densities was analyzed.  相似文献   

15.
Summary: Highly porous poly[(vinylidene fluoride)‐co‐hexafluoropropylene] (PVdF‐HFP)/TiO2 membranes were prepared by a phase inversion technique, using dimethyl acetamide (DMAc) as a solvent and water as a non‐solvent. Their physical and electrochemical properties were then characterized in terms of thermal and crystalline behavior, as well as ionic conductivity after absorbing an electrolyte solution of 1 M LiPF6 dissolved in an equal weight mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC). For comparison, cast films and their electrolytes were also made by a conventional casting method without using the water non‐solvent. In contrast to the case of using N‐methyl‐2‐pyrrolidone (NMP) as a solvent, the PVdF‐HFP/TiO2 composite electrolytes, obtained using DMAc, exhibited superior properties of electrochemical stability and interfacial resistance with a lithium electrode but had lower ionic conductivities. It was also demonstrated that the phase inversion membrane was more effective than the cast film as the polymer electrolyte of a lithium rechargeable battery. As a result, a phase inversion membrane with 50 wt.‐% TiO2 was demonstrated to be the optimal choice for application in a lithium rechargeable battery.

Time evolutions of interfacial resistance between polymer electrolyte and lithium electrodes.  相似文献   


16.
Modified carbon nanotubes (m‐CNTs) were successfully prepared by the interactions between nitric and sulfuric acids and CNTs, which was confirmed using Fourier transform infrared spectroscopy. Poly[(vinylidene fluoride)‐co‐hexafluoropropylene]‐based composite polymer electrolyte (CPE) membranes doped with various amounts of m‐CNTs were prepared by phase inversion method. The desired CPEs were obtained by soaking the liquid electrolytes for 30 min. The physicochemical and electrochemical properties of the CPE membranes were investigated using scanning electron microscopy, X‐ray diffraction, thermogravimetry, electrochemical impedance spectroscopy and linear sweep voltammetry. The results show that the CPE membranes doped with 2.2 wt% m‐CNTs possess the smoothest surface and the highest decomposition temperature about 450 °C. Obviously, adding an appropriate amount of m‐CNTs into the polymer matrix can decrease the crystallinity and enhance the ionic conductivity; the temperature dependence of ionic conductivity follows the Arrhenius relation and the ionic conductivity at room temperature is up to 4.9 mS cm?1. The interfacial resistance can reach a stable value of about 415 Ω cm?2 after 10 days storage. The excellent rate and cycle performances with an electrochemical working window up to 5.4 V ensure that the CPEs doped with 2.2 wt% m‐CNTs can be considered as potential candidates as polymer electrolyte for lithium ion batteries. © 2013 Society of Chemical Industry  相似文献   

17.
An iron‐based electrochemically mediated atom transfer radical polymerization (eATRP) system with tunable catalytic activity was developed by adjusting the supporting electrolyte formula. Kinetic behaviors of the systems using four typical supporting electrolytes (namely, TBABr, TBAPF6, TBACl, and TBABF4) were investigated. The type of anions was found to significantly affect the polymerization kinetics. TBAPF6 system proceeded with a considerable polymerization rate, whereas TBABr system showed better controllability. Importantly, the effect of supporting electrolyte on eATRP kinetics (mainly on ATRP equilibrium) was confirmed through kinetic modeling. Furthermore, the effect of catalyst loading using TBAPF6 as supporting electrolyte was also studied, and the results showed an uncontrolled polymerization for catalyst loading lower than 500 ppm. When hybrid supporting electrolyte (TBAPF6/TBABr) was used to tune catalytic activity, the polymerization slows down and the dispersity decreases with the increase in TBABr ratio. Polymers with a narrow molecular weight distribution (dispersity index <1.5) were obtained using 100% TBABr under 100 ppm catalyst. Besides, experimental attempt to improve the controllability by adding halogen donors was made, whereas the halogen donors just prolonged the induction period and no improvement was achieved. As a whole, a deeper understanding of kinetic studies is obtained by these controlled trials. © 2017 American Institute of Chemical Engineers AIChE J, 64: 961–969, 2018  相似文献   

18.
A series of conjugated polymer electrolytes (CPEs) comprising fluorene/carbazole or thiophene/carbazole backbones with quaternized ammonium iodide groups were synthesized and used in polymer solution and polymer gel electrolytes in dye‐sensitized solar cells (DSSCs). The photovoltaic (PV) performances became markedly poorer with increasing CPE content for the DSSCs based on polymer solution electrolytes. However, the PV performances were not significantly affected with increasing CPE content for the DSSCs fabricated from poly(ethylene oxide) (PEO)/CPE blend‐based gel‐type electrolytes. Moreover, higher PV efficiencies and stabilities were obtained for the DSSCs based on PEO/CPE blend gel electrolytes as compared to the DSSCs based on PEO gel electrolyte. The electrochemical impedance and PV properties of the DSSCs based on polymer solution electrolytes and on polymer gel electrolytes were determined as a function of the CPE concentration. Copyright © 2010 Society of Chemical Industry  相似文献   

19.
The objective of this effort is to synthesize and characterize a series of lanthanum‐(La) doped Sr2MgMoO6 (SMMO) and La‐doped Sr2MgNbO6 (SMNO) anode materials which can be used in combination with lanthanum‐containing electrolytes to mitigate the effects of lanthanum poisoning in solid oxide fuel cells (SOFCs). Currently, an La0.4Ce0.6O1.8 (LDC) buffer layer is used with many perovskite‐based anode materials to prevent La diffusion into the anode from the La0.8Sr0.2Ga0.8Mg0.2O2.8 (LSGM) electrolyte which can create a resistive La species that impedes electrochemical performance. The LDC buffer layer, with diminished electronic conductivity, adds an extra level of complexity in the SOFC manufacturing process. Further, this extraneous layer presents an added experimental challenge when assessing anode material performance. Overall electrochemical performance could be improved if the resistive buffer layer could be removed, thereby allowing the anode material to have direct contact with the electrolyte. To accomplish this, a new class of anode materials was synthesized with the goal of balancing “La” chemical potential between these neighboring materials. La‐doped SMMO and SMNO were prepared and studied. It was hypothesized that by incorporating La into the anode, the gradient of chemical activity between the anode and electrolyte would decrease, which would prevent La diffusion. These anode materials were synthesized via a sol–gel methodology and characterized with X‐ray diffraction to assess phase purity. The conductivity of the materials was analyzed in the presence of both H2 and 100 ppm H2S/H2 to determine the stability and performance of these materials during device operation. The stability experiments demonstrated that 40% La‐doped SMNO is stable in all pertinent environments while not reacting with the LSGM electrolyte.  相似文献   

20.
In this paper we report the results of physical–chemical and electrochemical investigations performed on ternary mixtures of the room temperature ionic liquid (IL) N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI), propylene carbonate (PC), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as electrolyte for lithium-ion batteries. The thermal stability, ionic conductivity, viscosity and electrochemical stability windows of all considered mixtures were investigated and compared with those of electrolytes based on the pure PYR14TFSI and PC. The mixtures were also used as electrolyte in combination with LiFePO4-based electrodes. The specific capacity and cycling stability of these systems were investigated at different C-rates, both at room temperature and 60 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号