首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two‐stage extraction process for the recovery of intracellular proteins from brewers' yeast was selected as a practical model system to study the implementation of polyethylene glycol (PEG)–phosphate aqueous two‐phase systems (ATPS). Disrupted all suspensions generated by homogenisation and bead milling were used to study the impact of cell debris upon the partition behaviour of the intracellular products (bulk protein, fumarase and pyruvate kinase). Regardless of their origin debris particles did not significantly influence the partition behaviour of the intracellular products in selected ATPS distant from the binodal and at volume ratios greater than one. Recycling of used PEG into the initial extraction stage did not significantly influence the protein partition behaviour in batch ATPS. In the polymer recycling studies in continuous ATPS using spray columns, the addition of fresh materials to make up the deficits of phase‐forming chemicals compensate any negative effect of the continuous recycling of the top PEG‐rich phase. The findings of these studies raise the potential application of ATPS processes for protein recovery from complex biological systems. © 2000 Society of Chemical Industry  相似文献   

2.
In this study the use of an aqueous two‐phase system (ATPS) following the direct chemical extraction of a recombinant viral coat protein, from the cytoplasm of Escherichia coli, is evaluated. The driving force is the need to establish an economically‐viable process for the manufacture of a vaccine against human papilloma infection. The partition behaviour of recombinant L1 protein, the major structural protein of the virus, and DNA was investigated in a polyethylene glycol (PEG)–phosphate system. An evaluation of system parameters including PEG molecular mass and the concentrations of PEG and phosphate was conducted, to estimate conditions under which the L1 protein and DNA partition to opposite phases. ATPS extraction comprising a volume ratio of 1.00, PEG 1000 (18.0%(w/w)) and phosphate (15.0%(w/w)) provided the conditions for accumulation of DNA into the bottom phase and concentration of L1 protein into the opposite phase (ie partition coefficient of DNA; ln KDNA < 0.0 and partition coefficient of L1; ln KL1 > 2.5). The findings reported here demonstrate the potential of ATPS to recover recombinant protein released from E coli by direct chemical extraction. © 2002 Society of Chemical Industry  相似文献   

3.
BACKGROUND: The potential use of plants as production systems to establish bioprocesses has been established over the past decade. However, the lack of efficient initial concentration and separation procedures affect the generic acceptance of plants as economically viable systems. In this context the use of aqueous two‐phase systems (ATPS) can provide strategies to facilitate the adoption of plants as a base for bioprocesses. Among the crops, soybeans (Glycine max) represent an attractive alternative since potentially they can produce high levels of recombinant protein. In this paper the processing of fractionated soybean extracts using ATPS is evaluated as a first step to recover recombinant proteins expressed in plants, using β‐glucuronidase (GUS; E.C. 3.2.1.31) as a model protein. RESULTS: The evaluation of the effect of system parameters provided the conditions under which the contaminant proteins from fractionated soybean extracts and GUS concentrated in opposite phases. A PEG 600/phosphate system comprising 14.5% (w/w) polyethylene‐glycol (PEG), 17.5% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, and a system pH of 7.0 resulted in the potential 83% recovery of GUS from the complex mixture and an increase in purity of 4.5‐fold after ATPS. CONCLUSIONS: The findings reported here demonstrate the potential of ATPS to process fractionated soybean extract as a first step to isolate and purify a recombinant protein expressed in soybeans. The proposed approach can simplify the way in which recombinant proteins expressed in plants can be recovered. Copyright © 2007 Society of Chemical Industry  相似文献   

4.
A new aqueous two‐phase system (ATPS) based on a degradable polymer called poly(ethylene oxide sulfide) with a molecular weight of 33 000 g mol?1 (identified as PEOS‐12) and potassium phosphate was exploited for the potential recovery of proteins. An initial characterisation of the ATPS was achieved by the construction of a phase diagram for the PEOS‐12/phosphate system. The protein partitioning behaviour of lysozyme and bovine serum albumin (BSA), selected as single model proteins, and B‐phycoerythrin (BPE) produced by Porphyridium cruentum in the new ATPS under increasing tie line length (TLL) conditions at constant phase volume ratio (Vr) and system pH was investigated. Both single proteins partitioned in the new ATPS, initially exhibiting bottom phase preference; however, lysozyme changed phase preference when TLL was increased. Fractionation of a complex model (production of BPE by P. cruentum) using PEOS‐12/phosphate ATPS was performed to evaluate the potential protein recovery from fermentation broth or cell homogenate. The proposed new ATPS proved to be suitable for the potential recovery of BPE from crude extract of P. cruentum. In general, a system comprising Vr = 1.0, 18% (w/w) PEOS‐12, 8% (w/w) phosphate and 30% (w/w) TLL at pH 7.0 provided conditions to concentrate BPE into the bottom phase (i.e. partitioning behaviour of BPE; lnKBPE = ?1.8) with a protein recovery of 84%. The findings reported here demonstrate the potential application of the new ATPS for the recovery of proteins from complex biological suspensions. Copyright © 2006 Society of Chemical Industry  相似文献   

5.
6.
BACKGROUND: Aqueous two‐phase extraction (ATPE) has many advantages as an efficient, inexpensive large‐scale liquid–liquid extraction technique for protein separation. However, the realization of ATPE as a protein separation technology at industrial scales is rather limited due to the large, multidimensional design space and the paucity of design approaches to predict phase and product behavior in an integrated fashion with overall system performance. This paper describes a framework designed to calculate suitable flowsheets for the extraction of a target protein from a complex protein feed using ATPE. The framework incorporated a routine to set up flowsheets according to target protein partitioning behavior in specific ATPE systems and a calculation of the amounts of phase‐forming components needed to extract the target protein. The thermodynamics of phase formation and partitioning were modeled using Flory‐Huggins theory and calculated using a Gibbs energy difference minimization approach. RESULTS: As a case study, suitable flowsheets to recover phosphofructokinase from a simple model feedstock using poly(ethylene glycol)‐dextran (PEG6000‐DxT500) and poly(ethylene glycol)‐salt (PEG6000‐Na3PO4) two‐phase systems were designed and the existence of feasible solutions was demonstrated. The flowsheets were compared in terms of product yield, product purity, phase settling rate and scaled process cost. The effect of the mass flowrates of phase‐forming components on product yield and purity was also determined. CONCLUSION: This framework is proposed as a basis for flowsheet optimization for protein purification using ATPE systems. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
8.
9.
10.
BACKGROUND: PEGylation reactions often result in a heterogeneous population of conjugated species and unmodified proteins that presents a protein separations challenge. Aqueous two‐phase systems (ATPS) are an attractive alternative for the potential fractionation of native proteins from their PEGylated conjugates. The present study characterizes the partition behaviors of native RNase A and α‐Lac and their mono and di‐PEGylated conjugates on polyethylene glycol (PEG)—potassium phosphate ATPS. RESULTS: A potential strategy to separate unreacted native protein from its PEGylated species was established based upon the partition behavior of the species. The effect of PEG molecular weight (400–8000 g mol?1), tie‐line length (15–45% w/w) and volume ratio (VR; 0.33, 1.00 and 3.00) on native and PEGylated proteins partition behavior was studied. The use of ATPS constructed with high PEG molecular weight (8000 g mol?1), tie‐line lengths of 25 and 35% w/w, and VR values of 1.0 and 3.0 allowed the selective fractionation of native RNase A and α‐Lactalbumin, respectively, from their PEGylated conjugates on opposite phases. Such conditions resulted in an RNase A bottom phase recovery of 99%, while 98% and 88% of mono and di‐PEGylated conjugates, respectively were recovered at the top phase. For its part, α‐Lac had a bottom phase recovery of 92% while its mono and di‐PEGylated conjugates were recovered at the top phase with yields of 77% and 76%, respectively. CONCLUSIONS: The results reported here demonstrate the potential application of ATPS for the fractionation of PEGylated conjugates from their unreacted precursors. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
12.
13.
Stem cell therapy has emerged as a promising alternative for replacing lost cells involved in neurodegenerative diseases. High efficiency of differentiation and full cell viability are actual challenges to achieve the translation of cell therapies to the clinic. To address this, the construction of aqueous two‐phase systems in three‐dimensional (ATPS‐3D) cultures has been proposed. This technique involves the combination of two polymers in which cells are confined in dextran droplets immersed over a substrate located in a poly(ethylene glycol) phase. The controlled placement of cells in a defined pattern promotes intercellular communication. This review aims to provide insight into the techniques used to enhance neural differentiation and current challenges to achieve the implementation of cell therapies. Cell density, colony size, interconnectivity and an appropriate substrate to modulate paracrine signaling are factors that determine neural differentiation efficiency during the construction of ATPS‐3D cultures. Hence, this contact‐free technique enables the design of neural niches to recapitulate in vivo environments more accurately. © 2020 Society of Chemical Industry (SCI)  相似文献   

14.
15.
In order to develop an aqueous two‐phase system (ATPS) for cephalexin synthesis with extractive bioconversion, the partitioning behaviour of cephalexin and 7‐aminodeacetoxicephalosporanic acid (7‐ADCA) in poly(ethylene glycol) (PEG)/salt ATPS were examined. Parameters such as PEG size, salt type and tie line length were investigated to find a primary extraction system. In PEG400/ammonium sulfate and PEG400/magnesium sulfate systems, the partition coefficient of cephalexin (KC) was larger than 1 while that of 7‐ADCA (KA) deviated about 1.5. Addition of neutral salts, surfactants and water‐miscible solvents were also investigated in the primary ATPS in order to improve the separation efficiency. KC greatly increased when neutral salts and surfactants were added to the PEG400/ammonium sulfate primary systems whereas KA was only slightly higher than that of the additive‐free ATPS. In an improved ATPS for extractive bioconversion, consisting of PEG400 (20% w/w), ammonium sulfate (17.5% w/w), methanol (5% w/w) and NaCl (3% w/w), a KC value of up to 15.2 was achieved; KA was 1.8; KP (partition coefficient of phenylglycine methyl ester) was 1.2 and the recovery yield of cephalexin was 94.2%. The results obtained from the extractive bioconversion of cephalexin in the improved ATPS showed that it is feasible to perform such an enzymatic process in an ATPS and the system offers the potential as a model for enzymatic synthesis of some water soluble products. © 2001 Society of Chemical Industry  相似文献   

16.
17.
A simplified process for the primary recovery and purification of B‐phycoerythrin (BPE) from Porphyridium cruentum exploiting aqueous two‐phase systems (ATPS) and isoelectric precipitation was developed in order to reduce the number of unit operations and benefit from increased purity and yield of the protein product. Evaluation of the partitioning behaviour of BPE in polyethylene glycol (PEG)/sulphate, PEG/dextran and PEG/phosphate ATPS was carried out to determine under what conditions the BPE and contaminants concentrated into opposite phases. An additional stage of isoelectric precipitation at pH 4.0 after cell disruption resulted in an increase in purity of the target protein from the BPE crude extract and enhanced the performance of the subsequent ATPS. PEG1000/phosphate ATPS proved to be suitable after isoelectric precipitation for the recovery of highly purified (defined as absorbance ratio A545 nm/A280 nm > 4.0) BPE with a potential commercial value as high as US$ 50/mg. An ATPS extraction stage comprising 29.5% (w/w) PEG1000, 9.0% (w/w) phosphate, a volume ratio (Vr) equal to 1.0, a system pH of 7.0 and loaded with 40% (w/w) of the BPE extract generated by precipitation allowed BPE recovery with a purity of 4.1±0.2 and an overall product yield of 72% (w/w). The purity of BPE from the crude extract increased 5.9‐fold after isoelectric precipitation and ATPS. The results reported herein demonstrate the benefits of the practical application of isoelectric precipitation together with ATPS for the recovery and purification of BPE produced by P. cruentum as a first step in the development of a commercial purification process. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
Leather processing involves discharge of high‐value soluble globular proteins in the wastewater. The recovery of value‐added products from the wastewaters is gaining more importance in the context of recovery of wealth from waste. The recovery of these globular proteins from tannery wastewater was selected as a practical model system to study the implementation of polyethylene glycol (PEG)‐sulfate aqueous two‐phase systems (ATPS). The partition coefficient of bovine serum albumin is comparable to that of soluble proteins from tannery wastewaters. The influence of concentration of polymer, salt, pH and temperature on the partitioning of soluble proteins from tannery wastewaters has been studied. The PEG6000 + sodium sulfate + water system provide better partitioning of these soluble proteins as compared to PEG6000 + ammonium sulfate system. The maximum protein recovery yield for PEG6000 + sodium sulfate + water system at 20 °C is 92.75%. The influence of temperature indicates the recovery of proteins from tannery wastewater to be better at lower temperature. The findings of these studies raise the potential application of ATPS processes for protein recovery from complex biological systems. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号