首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

2.
A new imide‐containing dicarboxylic acid based on a twisted binaphthylene unit, 2,2′‐bis(N‐trimellitoyl)‐1,1′‐binaphthyl (1), was synthesized from 1,1′‐binaphthyl‐2,2′‐diamine and trimellitic anhydride in glacial acetic acid. The structure of compound 1 was fully characterized with spectroscopic methods and elemental analysis. Series of thermally stable and organosoluble poly(amide imide)s (4a–4d) and poly(ester imide)s (5a–5d) with similar backbones were prepared by the triphenyl phosphite and diphenylchlorophosphate activated direct polycondensation of diimide dicarboxylic acid 1 with various aromatic diamines and diols, respectively. With due attention to the structural similarity of the resulting poly(amide imide)s and poly(ester imide)s, most of the differences between these two block copolyimides could be easily attributed to the presence of alternate amide or ester linkages accompanied by imide groups in the polymer backbone. The ultraviolet maximum wavelength values of the yellowish polymers were determined from their ultraviolet spectra. The crystallinity of these copolyimides was estimated by means of wide‐angle X‐ray diffraction, and the resultant polymers exhibited a nearly amorphous nature, except for the polymers derived from benzidine and 4,4′‐binaphthol. The poly(amide imide)s exhibited excellent solubility in a variety of highly polar aprotic solvents, whereas the poly(ester imide)s showed good solubility in less polar solvents. According to differential scanning calorimetry analyses, polymers 4a–4d and 5a–5d had glass‐transition temperatures between 331 and 357°C and between 318 and 342°C, respectively. The thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(amide imide)s and poly(ester imide)s were between 579 and 604°C and between 566 and 577°C in nitrogen, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3203–3211, 2006  相似文献   

3.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

4.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
3,3′‐Dinitrobenzidine was first reacted with excess m‐chlorophenyl acid to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydrides (Pyromellitic diconhydride (PMDA) and 3,3′,4,4′‐sulfonyl diphthalic anhydride) were also reacted with excess 4,4′‐diphenylmethane diisocyanate to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were further extended with the diacid monomer to form nitro groups containing aromatic poly(imide amide). The nitro groups in these copolymers were hydrogenated to form amine groups and then were cyclized at 180°C to form poly(imide amide benzimidazole) in poly(phosphoric acid), which acted as a cyclization agent. The resultant copolymers were soluble in sulfuric acid and poly(phosphoric acid), in sulfolane under heating to 100°C, and in the polar solvent N‐methyl‐2‐pyrrolidone under heating to 100°C with 5% lithium chloride. According to wide‐angle X‐ray diffraction, all the copolymers were amorphous. According to thermal analysis, the glass‐transition temperatures of the copolymers were 270–322°C. The 10% weight‐loss temperatures were 460–541°C in nitrogen and 441–529°C in air. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1435–1444, 2003  相似文献   

6.
A series of new polymerized monomer reactants (PMR) matrix resins of poly(pyrrolone‐benzimidazole)s containing a pyridine unit (PPBP) were synthesized by polycondensation of monoethyl ester of cis‐5‐norbornene‐endo‐2,3‐dicarboxylic acid, 2,6‐diphenyl ester pyridinedicarboxylic acid or 3,5‐diphenyl ester pyridinedicarboxylic acid, and diethyl ester of 4,4′‐oxydiphthalic acid with 3,3′‐diaminobenzidine in a mixing solution of anhydrous ethyl alcohol and N‐methylpyrrolidone under given temperature and pressure conditions. The resulting resin solutions showed good solubility in polar organic solvents and stability at room temperature. The corresponding PPBP matrix resin, molded powder, and molded plate were prepared by undergoing amidation, imidization, cyclization, and crosslinking reactions when the reaction temperature was increased from 80 to 350°C, successively; the crosslinking structure was formed by the reverse Diels–Alder reaction at 270–290°C under 50 MPa pressure (2.5–3.5 MPa displayed by the pressure meter). The chemical reactions and properties of the resulting PPBP were studied by means of FTIR, TGA, and DMA methods, and the results indicated that the kinds of PPBP materials retain excellent thermal stability and processability; when the initial decomposition temperature was above 620°C the Tg was at 413.5°C for 3,5‐PPBP‐20 molded plate. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3981–3990, 2004  相似文献   

7.
In this article, flexible nylon 6,6 was reinforced with rigid‐chain aromatic polyamides based on poly(4,4′‐diphenylsulfone terephthalamide) (PSA), poly(p‐diphenyl oxide terephthalamide) (POA), poly(p‐diphenylmethane terephthalamide) (PMA), and isophthaloyl chloride (IPC). Various high molecular weight block copolyamides were synthesized by solution polymerization using p‐aminophenylacetic acid (p‐APA) as a coupling agent. Their thermal properties show that the block copolyamides exhibit higher values of Tg and Tm and better thermal stability than those of nylon 6,6, especially the IPC‐modified nylon 6,6. The order of increased thermal properties of copolyamides is IPC > POA > PMA > PSA. From wide‐angle X‐ray diffraction patterns, it was found that nylon 6,6 has two diffraction peaks, that is, 2θ = 20.5° and 23°, while the multiblock copolymers showed only one at 2θ = 20°, indicating a different crystal structure. It was found that the mechanical properties of the IPC‐modified nylon 6,6 were improved more than those of the semirigid copolyamides. The order of tensile strength was IPC > PSA > PMA > POA, but for elongation, it was POA > PMA > PSA > IPC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2167–2175, 2001  相似文献   

8.
New phosphorus‐containing poly(ester‐imide)‐polydimethylsiloxane copolymers were prepared by solution polycondensation of 1,4‐[2‐(6‐oxido‐6H‐dibenz < c,e > < 1, 2 > oxaphosphorin‐6‐yl)]naphthalene‐bis(trimellitate) dianhydride with a mixture of an aromatic diamine (1,3‐bis(4‐aminophenoxy)benzene) and α,ω‐bis(3‐aminopropyl)oligodimethylsiloxane of controlled molecular weight, in various ratios. Poly(amic acid) intermediates were converted quantitatively to the corresponding polyimide structures using a solution imidization procedure. The polymers are easily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylformamide, as well as in less polar solvents such as tetrahydrofuran. They show good thermal stability, the decomposition temperature being above 370 °C. The glass transition temperatures are in the range 165–216 °C. Solutions of the polymers in N‐methyl‐2‐pyrrolidone exhibit photoluminescence in the blue region. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
Three series of isomeric poly(amide imide)s (series III, IV, and V) were synthesized by the direct polycondensation of 2,2′‐bis(4‐aminophenoxy)biphenyl (2,2′‐BAPB), 4,4′‐bis(4‐aminophenoxy)biphenyl (4,4′‐BAPB), or their equimolar mixture (2,2′‐BAPB/4,4′‐BAPB = 1/1) with 12 diimide diacids and with triphenyl phosphite and pyridine as condensing agents. A comparison of the physical properties of these three series was also made. The inherent viscosities of series III, IV, and V were 0.25–0.84, 0.25–1.52, and 0.43–1.30 dL g?1, respectively. Most of the series III polymers showed better solubility because of the non‐para structure, with the solubility order found to be III > V > IV. According to X‐ray diffraction patterns, the amorphous poly(amide imide)s had excellent solubility, whereas the crystalline polymers were less soluble. All the soluble polymers afforded transparent, flexible, and tough films, which had tensile strengths of 57–104 MPa, elongations at break of 3–20%, and initial moduli of 2.05–2.86 GPa. The glass‐transition temperatures (measured by differential scanning calorimetry) were highest for series IV, which contained the rigid 4,4′‐biphenyl units (254–299°C); copolymer series V ranked second (237–277°C), and series III, with crank 2,2′‐biphenyl structures, had the lowest values (227–268°C). The 10% weight‐loss temperatures (measured by thermogravimetric analysis) were close to one another, ranging from 527 to 574°C in nitrogen and from 472 to 543°C in air. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2763–2774, 2002  相似文献   

10.
A series of novel aromatic poly(ester‐ether‐imide)s with inherent viscosity values of 0.44–0.74 dL g?1 were prepared by the diphenylchlorophosphate‐activated direct polycondensation of an imide ring‐containing diacid namely 5‐(4‐trimellitimidophenoxy)‐1‐trimellitimido naphthalene ( 1 ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. Owing to comparison of the characterization data, an ester‐containing model compound ( 2 ) was also synthesized by the reaction of 1 with phenol. The model compound 2 and the resulted polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(ester‐ether‐imide)s were also determined. The resulting polymers exhibited an excellent organosolubility in a variety of high polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. They were soluble even in common less polar organic solvents such as pyridine, m‐cresol, and tetrahydrofuran on heating. Crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resulted polymers exhibited nearly an amorphous nature. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 221 and 245°C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(ester‐ether‐imide)s were found to be over 410°C in nitrogen. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
A new series of poly(ester imide)s were prepared from the polycondensation of isosorbide and a series of synthesized diacyl chloride monomers based on a reaction between 1,2,4-Benzenetricarboxylic anhydride (TMA) and various diamines. The structures of the resulting polymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and 13C NMR spectra. Inherent viscosities and size exclusion chromatography (SEC) measurements proved the formation of high molecular weight poly(ester imide)s. The thermogravimetric analysis (TGA) showed deterioration temperature in the range of 221–400 °C indicating a good thermal stability. The differential scanning calorimetry (DSC) measurements revealed high glass transition temperature in the range of 67–185 °C. Wide angle X-ray diffraction measurements showed that the studied poly(ester imide)s were semi-crystalline. Most of the synthesized poly(ester imide) exhibited a good adhesion ability and tensile strength values comparable to analogous polymers.  相似文献   

13.
In this study, 3,3′‐dinitrobenzidine was first reacted with excess isophthaloyl chloride to form a monomer with dicarboxylic acid end groups. Two types of aromatic dianhydride, [viz., pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐sulfonyldiphthalic anhydride (DSDA)] also were reacted with excess 4,4′‐diphenyl‐ methane diisocyanate (MDI) to form polyimide prepolymers terminated with isocyanate groups. The prepolymers were reacted further with the diacid monomer to form a nitro group–containing aromatic poly(amide imide) copolymers. The nitro groups in these copolymers were hydrogenated to form amine groups and cyclized at 180°C to form the poly(benzimidazole amide imide) copolymers in polyphosphoric acid (PPA), which acts as a cyclization agent. From the viscosity measurements, copolymer appeared to be a reasonably high molecular weight. From the differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements it was shown that the glass transition temperature of copolymers was in the range of ~270–322°C. The 10% weight loss temperatures were in the range of 460 ~ 541°C in nitrogen and ~441–529°C in air, respectively. The activated energy and the integration parameter of degradation temperature of the copolymers were evaluated with the Doyle‐Ozawa method. It indicated that these copolymers have good thermal and thermo‐oxidative stability with the increase in imide content. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2072–2081, 2004  相似文献   

14.
A new simple and rapid polycondensation reaction of 4,4′‐carbonyl‐bis(phthaloyl‐L ‐alanine)diacid chloride [N,N ′‐(4,4′‐carbonyldiphthaloyl)]bisalanine diacid chloride with several diphenols, such as bisphenol‐A, phenolphthalein, 1,8‐dihydroxyanthraquinone, 4,4′‐dihydroxybiphenyl, 1,5‐dihydroxynaphthalene and hydroquinone, in the presence of a small amount of a polar organic medium such as o‐cresol was performed using a domestic microwave oven. The polycondensation reaction proceeded rapidly and was almost complete within 12 min to give a series of poly(ester‐imide)s with inherent viscosities of about 0.35–0.58 dl g−1. The resulting poly(ester‐imide)s were obtained in high yield and are optically active and thermally stable. All the above compounds have been fully characterized by IR spectroscopy, elemental analysis, inherent viscosity (ηinh), solubility test and specific rotation. Thermal properties of the poly(ester‐imide)s have been investigated using thermal gravimetric analysis (TGA). © 2000 Society of Chemical Industry  相似文献   

15.
Poly(ester imide)s containing trimellitimide moieties have been used to reduce the brittleness of the bismaleimide resin composed of 4,4′‐bismaleimidediphenyl methane and o,o′‐diallyl bisphenol A. The poly(ester imide)s include poly[ethylene phthalate‐co‐ethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s containing 20–40 mol% trimellitimide (TI) unit, and poly[trimethylene phthalate‐co‐trimethylene N‐(1,4‐phenylene)trimellitimide dicarboxylate]s (PESIP) containing 20 mol% TI unit. The poly(ester imide)s are effective modifiers for reducing the brittleness of the bismaleimide resin. For example, when using 30 wt% of PESIP (20 mol% TI unit, Mw 13 500 g mol?1), the fracture toughness (KIC) for the modified resin is increased by 80% with retention in flexural properties and a slight loss of the glass transition temperature, compared with the values of the unmodified cured bismaleimide resin. Microstructures of the modified resins have been examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism is discussed in terms of the morphological and dynamic viscoelastic behaviour of the modified bismaleimide resin system. © 2004 Society of Chemical Industry  相似文献   

16.
Eight new flame‐retardant poly(amide‐imide)s with high inherent viscosities containing phosphine oxide moieties in main chain were synthesized from the polycondensation reaction of N,N′‐(3,3′‐diphenylphenylphosphine oxide) bistrimellitimide diacid chloride 7, with eight ;aromatic diamine 8a–h by two different methods such as solution and microwave‐assisted polycondensation. Results showed that the microwave‐assisted polycondensation by using a domestic microwave oven proceeded rapidly, compared with solution polycondensation and were completed within about 10–12 min. The resulting poly(amide‐imide)s 9a–h showed high thermal stability and flame‐retardant properties. All of the obtained polymers were fully characterized by means of elemental analysis, viscosity measurements, solubility test, and FTIR spectroscopy. Thermal properties of the PAIs 9a–h were investigated by using thermal gravimetric analysis (TGA), derivative thermogravimetric analysis (DTG), and differential scanning calorimetry (DSC). Char yield measurements at 600°C demonstrated that incorporating phosphine oxide moieties in polymer backbone markedly improves their flame retardancy. All of the earlier polymers were soluble at room temperature in various organic solvents such as NMP, DMF, DMSO, DMAc, and concentrated sulfuric acid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4263–4269, 2006  相似文献   

17.
Aromatic polyesters were prepared and used to improve the brittleness of bismaleimide resin, composed of 4,4′‐bismaleimidodiphenyl methane and o,o′‐diallyl bisphenol A (Matrimid 5292 A/B resin). The aromatic polyesters included PEPT [poly(ethylene phthalate‐co‐ethylene terephthalate)], with 50 mol % of terephthalate, PEPB [poly(ethylene phthalate‐co‐ethylene 4,4′‐biphenyl dicarboxylate)], with 50 mol % of 4,4′‐biphenyl dicarboxylate, and PEPN [poly(ethylene phthalate‐co‐ethylene 2,6‐naphthalene dicarboxylate)], with 50 mol % 2,6‐naphthalene dicarboxylate unit. The polyesters were effective modifiers for improving the brittleness of the bismaleimide resin. For example, inclusion of 15 wt % PEPT (MW = 9300) led to a 75% increase in fracture toughness, with retention in flexural properties and a slight loss of the glass‐transition temperature, compared with the mechanical and thermal properties of the unmodified cured bismaleimide resin. Microstructures of the modified resins were examined by scanning electron microscopy and dynamic viscoelastic analysis. The toughening mechanism was assessed as it related to the morphological and dynamic viscoelastic behaviors of the modified bismaleimide resin system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2352–2367, 2001  相似文献   

18.
Soluble poly(amide imide) derivatives were prepared through the direct polycondensation of 1,2,4‐benzenetricarboxylic acid and three diamines—bis[4‐(3‐aminophenoxy)phenyl]sulfone, bis(4‐aminophenyl)‐1,4‐diisopropylbenzene, and 4,4′‐oxydianilne—in the presence of metal salts and phosphorous compounds. Phosphonium salt, which was used as the initiating species and was prepared by the reaction of the metal salts and phosphorous compounds, reacted with 1,2,4‐benzenetricarboxylic acid to form acyloxy phosphonium salt, and then the salt was reacted with a diamine for the preparation of the prepolymers. The prepolymers were converted into the corresponding poly(amide imide)s in a homogeneous solution state at 180°C. The poly(amide imide)s showed good thermal and mechanical properties. Glass‐transition temperatures were observed from 240 to 270°C in differential scanning calorimetry traces. A melting endotherm was not observed for the polymers with differential scanning calorimetry. The initial decomposition occurred around 400°C according to thermogravimetric analysis, and major weight loss was observed from 610 to 680°C. The poly(amide imide)s had comparatively good solubility in aprotic polar solvents at concentrations high enough (~30%) for the fabrication of various forms. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1399–1407, 2002  相似文献   

19.
A series of poly(ester imide)s mainly derived from N,N′‐hexane‐1,6‐diylbistrimellitimides, 4,4′‐dihydroxybenzophenone, and p‐hydroxybenzoic acid were synthesized by a direct polycondensation method in benzenesulfonyl chloride, N,N′‐dimethylformamide, and pyridine with different monomer feeding sequences. The molecular structures and properties of the resultant poly(ester imide)s were characterized with NMR, IR spectrometry, polarized light microscopy, wide‐angle X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The results showed that the monomer feeding sequences had a great effect on the sequential structure of the molecular chains of the copolymers and consequently on their liquid‐crystalline (LC) properties, fiber‐forming capability, and other properties. Thus, it is probable that one could obtain an LC poly(ester imide) with given properties by controlling the monomer feeding sequence during the polycondensation process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Pyromellitic dianhydride (1,2,4,5‐benzenetetracarboxylic acid 1,2,4,5‐dianhydide) was reacted with L ‐valine in a mixture of acetic acid and pyridine (3:2) at room temperature, and then was refluxed at 90–100 °C, N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid was obtained in quantitative yield. The imide–acid was converted to N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride by reaction with thionyl chloride. Rapid and highly efficient synthesis of a number of poly(amide–imide)s was achieved under microwave irradiation using a domestic microwave oven by polycondensation of N,N′‐(pyromellitoyl)‐bis‐L ‐valine diacid chloride with six different derivatives of 5,5‐disubstituted hydantoin compounds in the presence of a small amount of a polar organic medium that acts as a primary microwave absorber. A suitable organic medium was o‐cresol. The polycondensation proceeded rapidly, compared with conventional melt polycondensation and solution polycondensation and was almost completed within 8 min, giving a series of poly(amide–imide)s with inherent viscosities in the range 0.15–0.36 dl g?1. The resulting poly(amide–imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by Fourier‐transform infrared (FT‐IR) spectroscopy, elemental analysis, inherent viscosity (ηinh) measurements, solubility testing and specific rotation measurements. The thermal properties of the poly(amide–imide)s were investigated by using thermogravimetric analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号