共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
传统的卷积神经网络使用池化层对信息进行降维操作,通常会造成信息损失,从而影响网络的表达能力.针对这一问题,使用参数池化层(Parameterized Pooling Layer)替代传统卷积神经网络中的池化层,提出参数池化卷积神经网络(Parameterized Pooling CNN,PPCNN).参数池化层在仅仅增加了少量网络参数的情况下,最大可能的保留了卷积神经网络中希望被保留下来的特征;同时,由于增加了池化层前向传播的信息,从而影响了反向传播算法中权值的更新,网络收敛速度更快;实验结果表明,PPCNN模型与传统卷积神经网络模型以及部分改进模型相比,参数池化卷积神经网络模型是有效的. 相似文献
4.
将基于Daubechies尺度函数的时域多分辨率分析(Muti-Resolution Time-Domain ,MRTD)方法应用到色散介质的分析中.采用梯形递归卷积(Trapezoidal Recursive Convolution ,TRC)方法,推导出了适合Drude-Lorentz模型的差分方程.通过对一维等离子体和金属铝板反射系数的仿真分析,证明了该方法的正确性和有效性.与基于辅助方程(Auxiliary Difference Equation ,ADE)的MRTD方法相比,该方法可以有效地节约内存和计算时间,并且获得更高的计算精度. 相似文献
5.
6.
随着科技的发展人脸识别技术得到了巨大的应用,实现人脸识别的方法也越来越多,本文先简单对比了MLP、RNN、CNN这三个神经网络,然后再对CNN的基础结构进行了一个较为详细的介绍,主要通过对LeNet-5卷积神经网络模型结构的分析来了解卷积神经网络,然后设计了一款针对Olivetti Faces人脸数据库的卷积神经网络模型,通过更改卷积层中卷积核个数以及学习速率来进行一系列实验,最终确定在本次实验当中,当学习速率为0.05时,第一层卷积层卷积核数目为20,第二层卷积层数目为40的时候,能够得到一个针对Olivetti Faces人脸数据库有着较高识别率的一个新的卷积神经网络模型。 相似文献
7.
手势识别是人机交互,智能语义识别和远程人机 交流领域的热门研究课题。目前基于 视觉的手势识别问题仍是研究的难点,在多变背景下的手势姿态识别仍然存在较大问题。近 年来,随着深度神经网络技术的快速发展,利用网络自主学习的方法来提取手势姿态有关特 征得到了广泛关注。由于卷积神经网络具有较强的学习能力和个体特征的表达能力,本文针 对传统手势识别算法精度低,鲁棒性差的问题,提出了基于卷积神经网络的TensorFlow框架 下加入扁平卷积模块的FD-CNN网络手势识别算法。在预处理数据集后,基于FD-CNN网络的 手 势识别方法可以直接将预处理后的图像输入网络进行训练,最终输出测试结果的识别精度为 99.0%。与传统方法和经典卷积神经网络方法相比,本文方法提高了 网 络系统对样本数据的多样性和复杂性的有效识别,具有较高的识别率和较好的鲁棒性效果。 相似文献
8.
9.
TensorFlow是Google公司发布的开源人工智能深度学习框架,卷积神经网络是进行图像识别的一种有效方法。本文在研究Tensorflow深度学习框架以及卷积神经网络的基础上,利用keras官方下载的cifar数据集,采用LeNet-5算法对数据进行了处理、建模、训练、并对模型进行了评估以及保存,利用测试集完成测试后,不同图像识别的准确率有所不同,青蛙识别的准确率最高,为79%,汽车的识别准确率为78%,猫和狗的识别准确率最低,分别为41%和53%,所有图像识别的平均准确率为65%。 相似文献
10.
图像识别是"图像处理"教学中的重要内容.本文在Linux环境下使用iTorch notebook可视化界面利用卷积神经网络实现mnist手写数字体的准确识别,并详细介绍卷积神经网络的原理,给出直观的实验结果.教学实践表明,通过具有应用性和趣味性的实验可以提高学生的积极性,加深对课程理论的认知,培养其分析问题和解决问题的能力. 相似文献
11.
近年来,卷积神经网络(Convolutional Neural Network,CNN)在合成孔径雷达(Synthetic Aperture Radar,SAR)图像目标分类中取得了较好的分类结果。CNN结构中,前面若干层由交替的卷积层、池化层堆叠而成,后面若干层为全连接层。全卷积神经网络(All Convolutional Neural Network, A-CNN)是对CNN结构的一种改进,其中池化层和全连接层都用卷积层代替,该结构已在计算机视觉领域被应用。针对公布的MSTAR数据集,提出了基于A-CNN的SAR图像目标分类方法,并与基于CNN的SAR图像分类方法进行对比。实验结果表明,基于A-CNN的SAR图像目标分类正确率要高于基于CNN的分类正确率。 相似文献
12.
基于三元卷积神经网络的行人再辨识算法多数采用欧式距离度量行人之间的相似度,并配合铰链(hinge)损失函数进行卷积神经网络的训练。然而,这种作法存在两个不足:欧式距离作为行人相似度,鉴别力不够强;铰链损失函数的间隔(Margin)参数设定依赖于人工预先设定且在训练过程中无法自适应调整。为此,针对上述两个不足进行改进,该文提出一种基于新型三元卷积神经网络的行人再辨识算法,以提高行人再辨识的准确率。首先,提出一种归一化混合度量函数取代传统的度量方法进行行人相似度计算,提高了行人相似度度量的鉴别力;其次,提出采用Log-logistic函数代替铰链函数,无需人工设定间隔参数,改进了特征与度量函数的联合优化效果。实验结果表明,所提出的算法在Auto Detected CUHK03 和VIPeR两个数据库上的准确率均获得显著的提升,验证了所提出算法的优越性。 相似文献
13.
非下采样剪切波变换(NSST)域中低频子带的融合需要人工给定融合模式,因此未能充分捕获源图像的空间连续性和轮廓细节信息.针对上述问题,提出了基于深度卷积神经网络的红外与可见光图像融合算法.首先,使用孪生双通道卷积神经网络学习NSST域低频子带的特征来输出衡量子带空间细节信息的特征图.然后,根据高斯滤波处理的特征图设计了基于局部相似性的测量函数来自适应地调整NSST域低频子带的融合模式.最后,根据NSST域高频子带的方差、局部区域能量以及可见度特征来自适应地设置脉冲耦合神经网络参数完成NSST域高频子带的融合.实验结果表明:该算法QAB/F指标略弱于对比算法,但SF、SP、SSIM以及VIFF指标分别提高了约50.42%、14.25%、7.91%以及61.67%,有效地解决了低频子带融合模式给定的问题,同时又克服了手动设置PCNN参数的缺陷. 相似文献
14.
15.
行人再识别问题中,由于视角、光照和行人姿态等因素的变化,导致难以提取有效的行人特征,降低识别精度.而深度神经网络在训练样本较少的情况下较难训练,易出现过拟合现象.针对上述问题,本文提出一种多信息流动卷积神经网络(Multi-information Flow Convolutional Neural Network,MiF-CNN)模型,模型中包含一个特殊的卷积结构,该结构中每层卷积层提取到的特征与后续所有卷积层的输入相连接,增强了网络的特征信息流动性和梯度的反向传播效率,使得模型提取到的行人特征更具判别力.采用多损失函数组合方式训练网络模型,更好的区分行人类别.最后利用欧氏距离对行人特征相似性进行排序.在标准行人再识别数据集VIPeR和CUHK01上的实验表明,本文方法进一步提高了行人再识别精度,并有效改善了深度神经网络的过拟合现象. 相似文献
16.
With the continuous progress of The Times and the development of technology,the rise of network social media has also brought the“explosive”growth of image data.As one of the main ways of People’s Daily communication,image is widely used as a carrier of communication because of its rich content,intuitive and other advantages.Image recognition based on convolution neural network is the first application in the field of image recognition.A series of algorithm operations such as image eigenvalue extraction,recognition and convolution are used to identify and analyze different images.The rapid development of artificial intelligence makes machine learning more and more important in its research field.Use algorithms to learn each piece of data and predict the outcome.This has become an important key to open the door of artificial intelligence.In machine vision,image recognition is the foundation,but how to associate the low-level information in the image with the high-level image semantics becomes the key problem of image recognition.Predecessors have provided many model algorithms,which have laid a solid foundation for the development of artificial intelligence and image recognition.The multi-level information fusion model based on the VGG16 model is an improvement on the fully connected neural network.Different from full connection network,convolutional neural network does not use full connection method in each layer of neurons of neural network,but USES some nodes for connection.Although this method reduces the computation time,due to the fact that the convolutional neural network model will lose some useful feature information in the process of propagation and calculation,this paper improves the model to be a multi-level information fusion of the convolution calculation method,and further recovers the discarded feature information,so as to improve the recognition rate of the image.VGG divides the network into five groups(mimicking the five layers of AlexNet),yet it USES 3*3 filters and combines them as a convolution sequence.Network deeper DCNN,channel number is bigger.The recognition rate of the model was verified by 0RL Face Database,BioID Face Database and CASIA Face Image Database. 相似文献
17.
18.
飞机目标识别是地面情报系统的一项重要关键技术。近年来火热的深度学习方法,如卷积神经网络,展现出对于图像识别任务的优越性能。但是,训练卷积神经网络需要大量的带标签样本以估计规模庞大的模型参数,因而限制了其在雷达目标识别领域中的应用。针对飞机目标识别中的小样本问题,文中引入适用于有限数据场景的迁移学习技术,预先在其他大样本高分辨距离像数据上训练一个初始卷积神经网络模型,再结合当前飞机目标识别任务调优模型参数。在实测数据上的实验结果显示,与仅使用卷积神经网络的方法相比,所提方法可显著提升识别准确率,验证了方法的有效性。 相似文献
19.
实弹射击是部队的基础军事训练项目。现有报靶系统中基于计算机视觉的弹孔识别定位系统由于具有快速、精确、安全、人员成本低等优点而被广泛应用到该项目中。然而,计算机视觉系统处理的图像通常受镜头加工工艺以及相机轴向与被测对象所在平面不垂直的影响,导致被测对象的图像产生畸变,最终会给弹孔坐标位置的精准定位带来误差。为了提高基于计算机视觉的自动报靶系统的报靶精度,提出一种基于卷积神经网络的畸变校正算法,只需一张胸环靶面的模板图像即可模拟出大量训练数据集。训练完成后,输入一张畸变图片就可以得到该图片的畸变参数,并利用该参数完成对图像的畸变校正。与传统校正算法的对比结果表明,该算法校正效果较好,有利于提升基于计算机视觉的自动报靶系统的报靶精度。 相似文献
20.
随着合成孔径雷达技术的成熟,传统方法已经难以满足海量SAR数据的分类精度和速度需求。为解决上述问题,采用卷积神经网络对海量SAR数据进行分类。针对SAR图像数据的特点,对卷积神经网络结构参数进行调整,提高网络训练速度,克服权重更新中的梯度消失,改善网络训练过程中收敛慢的问题,提升目标分类准确率。同时提出了一种ZCA白化与主成分分析相结合的方法对SAR图像进行预处理,进一步提升了网络的训练速度以及目标分类的准确率。实验采用的是美国MSTAR数据库,通过上述优化方法得到了较好的分类效果。 相似文献