首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
短期铁路客运需求量的实时精准预测可以为实时调整客运服务结构提供依据.铁路旅客流量数据具有时变性、非线性和随机波动性等特点,传统的预测模型无法精准的预测短期内的客流量.本文提出一种基于小波包分解与长短时记忆融合的深度学习预测模型(WPA-LSTM),首先用小波包分解将原始客运量时间序列分解重构成多个不同尺度的低频和高频序列,然后分别针对各个子序列进行LSTM模型训练和预测,最后将各子序列的预测值叠加作为WPA-LSTM模型的输出.采用某高铁367天的日旅客流量数据对模型进行实验验证,并与季节性模型和基于经验模态的长短时记忆融合模型进行对比,实验结果表明,WPA-LSTM模型可有效提高铁路旅客流量预测的精度.  相似文献   

2.
针对日渐丰富的多语种文本数据,为了实现对同一类别体系下不同语种的文本分类,充分发挥多语种文本信息的价值,提出一种结合双向长短时记忆单元和卷积神经网络的多语种文本分类模型BiLSTM-CNN模型。针对每个语种,利用双向长短时记忆神经网络提取文本特征,并引入卷积神经网络进行特征优化,获得各语种更深层次的文本表示,最后将各语种的文本表示级联输入到softmax函数预测类别。在中英朝科技文献平行数据集上进行了实验验证,实验结果表明,该方法相比于基准方法分类正确率提高了4%,且对任一语种文本均能正确分类,具有良好的扩展性。  相似文献   

3.
为进一步提升语音测谎性能,提出了一种基于去噪自编码器(DAE)和长短时记忆(LSTM)网络的语音测谎算法。首先,该算法构建了优化后的DAE和LSTM的并行结构PDL;然后,提取出语音中的人工特征并输入DAE以获取更具鲁棒性的特征,同时,将语音加窗分帧后提取出的Mel谱逐帧输入到LSTM进行帧级深度特征的学习;最后,将这两种特征通过全连接层及批归一化处理后实现融合,使用softmax分类器进行谎言识别。CSC(Columbia-SRI-Colorado)库和自建语料库上的实验结果显示,融合特征分类的识别准确率分别为65.18%和68.04%,相比其他对比算法的识别准确率最高分别提升了5.56%和7.22%,表明所提算法可以有效提高谎言识别精度。  相似文献   

4.
基于长短时记忆网络的人体姿态检测方法   总被引:1,自引:0,他引:1  
郑毅  李凤  张丽  刘守印 《计算机应用》2018,38(6):1568-1574
针对在循环神经网络(RNN)网络结构下较为遥远的历史信号无法传递至当前时刻的问题,长短时记忆(LSTM)网络作为RNN的一种变体被提出,在继承RNN对时间序列优秀的记忆能力的前提下,LSTM克服了这种时间序列的长期依赖问题,并在自然语言处理与语音识别领域有较好的表现。对于人体行为动作中也存在作为时间序列的长期依赖问题与使用传统滑窗算法采集数据时造成的无法实时检测的问题,将LSTM扩展应用到人体姿态检测,提出了基于LSTM的人体姿态检测方法。通过目前智能手机中一般都带有的加速度传感器、陀螺仪、气压计和方向传感器实时采集的时序数据,制作了包含3336条带有人工标注数据的人体姿态数据集,对行走、奔跑、上楼梯、下楼梯和平静五种日常持续性行为姿态与跌倒、起立、坐下和跳跃这四个突发行为姿态进行预测分类。对比LSTM网络与该研究领域内常用的浅层学习算法、深度学习全连接神经网络与卷积神经网络,实验结果表明,所提方法使用端对端的深度学习的方法相比基于所制作数据集的人体姿态检测算法模型的正确率提高了4.49个百分点,验证了该网络结构的泛化能力且更适合姿态检测。  相似文献   

5.
由于循环神经网络拥有复杂的模型结构,使训练模型达到最优变得困难。因此,提出一种最小窥视孔长短时记忆模型,它只有一个唯一门来更新信息,拥有两个网络层,通过减少一定的模型参数降低模型训练的难度,提高模型性能。实验结果表明,在不同数据集上,该模型性能高于长短期记忆模型,部分高于门循环单元模型,在参数个数、运行时间方面,其远小于长短期记忆模型以及门循环单元模型。  相似文献   

6.
风能作为一种绿色能源在我国能源结构中发挥着越来越重要的作用;风电机组的滚动轴承作为传动系统的重要组成部分,是其主要故障部件之一;随着风电规模的不断增长,及时地发现风电机组滚动轴承的故障对风电场安全稳定运行具有重要意义;针对传统回归神经网络存在的梯度消失问题,提出了利用长短时记忆神经网络对风电机组滚动轴承进行故障诊断的模型;首先,利用小波包变换对风电机组滚动轴承振动信号进行处理,提取其特征向量,将其作为长短时神经网络的输入,从而诊断出风电机组滚动轴承的3种常见故障;通过算例分析,结果表明所提出的方法能够有效地对风电机组的滚动轴承进行故障诊断,并且在故障特征量差异不明显的情况下长短时记忆神经网络仍具有良好的故障诊断性能,说明了该方法的可行性和有效性。  相似文献   

7.
针对水听器采集信号过程中存在的外界环境噪声干扰问题,提出了一种基于变分模态分解和小波阈值(VMD-WT) 的联合去噪方法该方法首先对含噪信号进行VMD分解,得到固有模态函数(IMFs)。然后计算每个IMF分量的中心频率和相关系数,通过相关系数阈值去除噪声IMFs,并对其余有用的IMFs进行小波阈值去噪处理。最后对去噪的IMF分量进行重构,得到具有良好信噪比的信号,通过仿真实验,证明了本方法与CEEMDAN=WT(自适应噪声的完备经验模态分解-小波阈值去噪)、EEMD-WT(集合经验模态分解-小波阈值去噪)、EMD-WT(经验模态分解-小波阈值去噪)、WT(小波阈值去噪)等方法相比,具有更好的去噪效果。通过对光纤水听器的实测实验表明本文的VMD-WT法在实际水听运用中具有良好的提高信噪比的性能。  相似文献   

8.
针对基于视觉的动态手势识别易受光照、背景和手势形状变化影响等问题,在分 析人体手势空间上下文特征的基础上,首先建立一种基于人体骨架和部件轮廓特征的动态手势 模型,并采用卷积姿势机和单发多框检测器技术构造深度神经网络进行人体手势骨架和部件轮 廓特征提取。其次,引入长短时记忆网络提取动态人体手势中骨架、左右手和头部轮廓的时序 特征,进而分类识别手势。在此基础上,设计了一种空间上下文与时序特征融合的动态手势识 别机(GRSCTFF),并通过交警指挥手势视频样本库对其进行网络训练和实验分析。实验证明, 该系统 可以快速准确识别动态交警指挥手势,准确率达到94.12%,并对光线、背景和手势形 状变化具有较强的抗干扰能力。  相似文献   

9.
10.
在利用小波变换对油库(站)输油管道的磁记忆检测信号进行消噪处理时,主要有三种方法,基于小波变换的非线性方法能够获得较理想的处理效果。本文详细介绍了基于该方法的信号处理原理,并重点介绍了影响消噪效果的三项因素。非线性方法在工程实践中取得了良好的效果。  相似文献   

11.
动叶片与发动机机匣之间的叶尖间隙参数是反映航空发动机工作性能和运行安全的关键状态参数之一。提高叶尖间隙信号信噪比是实现高精度叶尖间隙测量的关键,为此提出基于自适应滑动均值和小波阈值的混合叶尖间隙信号实时降噪方法。首先根据叶片转速等信息,估算叶尖间隙信号带宽大小,然后通过动态改变滑动均值滤波的滑动点数来实现自适应低通滤波,最后结合小波阈值降噪时频分析能力,进一步降低噪声干扰。通过仿真实验确定采用对db5小波基函数进行6层小波阈值分解.仿真结果表明该方法在各项降噪评价指标方面全面优于现有的有限脉冲响应和固定点滑动均值滤波方法。1000rpm~4000rpm转速范围内实际测试表明,该方法最大测量误差为16μm,有效提高叶尖间隙测量精度。  相似文献   

12.
张政  何山  贺靖淇 《计算机应用》2019,39(9):2726-2730
视频可以看作是连续的视频帧图像组成的序列,视频彩色化的实质是对图像进行彩色化处理,但由于视频的长期序列性,若直接将现有的图像着色方法应用到视频彩色化上极易产生抖动或闪烁现象。针对这个问题,提出一种结合长短时记忆(LSTM)和卷积神经网络(CNN)的混合神经网络模型用于视频的着色。该方法用CNN提取视频帧的语义特征,同时使用LSTM单元学习灰度视频的时序信息,保证视频的时空一致性,然后融合局部语义特征和时序特征,生成最终的彩色视频帧序列。通过对实验结果的定量分析和用户研究表明,该方法在视频彩色化上实现了较好的效果。  相似文献   

13.
基于尺度乘积与小波收缩相结合的去噪方法   总被引:4,自引:0,他引:4  
郭显久  王伟 《控制与决策》2005,20(6):698-701
提出一种将相邻尺度的小波系数乘积与小波阚值收缩相结合的信号去噪方法.该方法采用小波系数乘积的直方图方法提取小波系数.用该方法去噪既能很好地保持信号突变点的原有特性,又具有较强的去噪能力.数值仿真表明,与小波阚值收缩方法相比,该方法在信噪比和均方差指标上都有明显的提高,并能很好地保持信号的形状.  相似文献   

14.
地震信号小波变换的去噪方法   总被引:7,自引:2,他引:7  
运用模极大值法基本原理进行地震信号去噪研究,进而运用二次小波变换原理通过低层系数处理对常用小波去噪方法进行改进.通过合成不同的染噪地震信号,由一系列仿真实验对模拟地震信号进行不同尺度的小波分解与重构,从而实现最优小波分解尺度上的地震信号噪声去除.与常用的快速傅立叶转换方法比较,仿真结果表明,该小波变换方法能够有效去除地震勘探信号中的噪声,并且针对系数的二次小波变换可以明显改进去噪的效果.  相似文献   

15.
基于注意力长短时记忆网络的中文词性标注模型   总被引:1,自引:0,他引:1  
针对传统的基于统计模型的词性标注存在人工特征依赖的问题,提出一种有效的基于注意力长短时记忆网络的中文词性标注模型。该模型以基本的分布式词向量作为单元输入,利用双向长短时记忆网络提取丰富的词语上下文特征表示。同时在网络中加入注意力隐层,利用注意力机制为不同时刻的隐状态分配概率权重,使隐层更加关注重要特征,从而优化和提升隐层向量的质量。在解码过程中引入状态转移概率矩阵,以进一步提升标注准确率。在《人民日报》和中文宾州树库CTB5语料上的实验结果表明,该模型能够有效地进行中文词性标注,其准确率高于条件随机场等传统词性标注方法,与当前较好的词性标注模型也十分接近。  相似文献   

16.
17.
本文针对小波空间适应法在用于TOKAMAK铯谱信号以及ECG信号去噪中的缺陷,提出一种利用平稳小波变换来消除信号加性噪声的方法。对受噪声污染的信号进行多层平稳小波变换,避层估计平稳小渡变换细节信号中噪声的均方差并适当选取各层阈值.对平稳小波变换的各层细节信号进行不同的闭值处理,从而更好地抑制小波空间适应法消噪出现的Gibbs现象.较好地保持了铯谱信号和ECG信号的几何特征。  相似文献   

18.
基于级联离散小波变换的信号去噪方法研究   总被引:1,自引:0,他引:1  
提出了基于级联离散小波变换的信号去噪方法。该方法通过对带噪信号作一层离散小波变换(DWT)后提取的低频部分和高频部分分别作一层DWT和四层DWT,然后,对低频部分提取的低频成分和高频成分均作三层DWT,接着,对所有分解的小波系数进行阈值处理,最后,完成信号重构。实验结果表明:在同样的小波分解层次下,本方法去噪效果好于DWT法和WPD法。  相似文献   

19.
鉴于不同类型氨基酸的相互作用对蛋白质结构预测的影响不同,文中融合卷积神经网络和长短时记忆神经网络模型,提出卷积长短时记忆神经网络,并应用到蛋白质8类二级结构的预测中.首先基于氨基酸序列的类别信息和氨基酸结构的进化信息表示蛋白质序列,并采用卷积提取氨基酸残基之间的局部相关特征,然后利用双向长短时记忆神经网络提取蛋白质序列内部残基之间的远程相互作用,最后将提取的蛋白质的局部相关特征和远程相互作用用于蛋白质8类二级结构的预测.实验表明,相比基准方法,文中模型提高8类二级结构预测的精度,并具有良好的可扩展性.  相似文献   

20.
基于小波的信号阈值去噪算法研究   总被引:1,自引:0,他引:1  
张德丰 《现代计算机》2007,(5):26-28,52
阈值去噪的方法就是在小波分解后的各层系数中,对模大于或小于某阈值T的系数分别处理,然后对处理完的小波系数再反变换重构出经去噪后的信号.在阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数模的不同的处理策略以及不同的估计方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号