共查询到17条相似文献,搜索用时 62 毫秒
1.
介绍了支持向量机,报告了支持向量机增量学习算法的研究现状,分析了支持向量集在加入新样本后支持向量和非支持向量的转化情况.针对淘汰机制效率不高的问题,提出了一种改进的SVM增量学习淘汰算法--二次淘汰算法.该算法经过两次有效的淘汰,对分类无用的样本进行舍弃,使得新的增量训练在淘汰后的有效数据集进行,而无需在复杂难处理的整个训练数据集中进行,从而显著减少了后继训练时间.理论分析和实验结果表明,该算法能在保证分类精度的同时有效地提高训练速度. 相似文献
2.
为实现对历史训练数据有选择地遗忘,并尽可能少地丢失训练样本集中的有用信息,分析了KKT条件与样本分布间的关系并得出了结论,给出了增量训练中当前训练样本集的构成.为了提高SVM增量训练速度,进一步利用训练样本集的几何结构信息对当前训练样本集进行约减,用约减后的当前训练样本集进行SVM增量训练,从而提出一种利用KKT务件与类边界包向量的快速SVM增量学习算法.实验结果表明,该算法在保持较高分类精度的同时提高了SVM增量学习速度. 相似文献
3.
针对基于支持向量机的Web文本分类效率低的问题,提出了一种基于支持向量机Web文本的快速增量分类FVI-SVM算法。算法保留增量训练集中违反KKT条件的Web文本特征向量,克服了Web文本训练集规模巨大,造成支持向量机训练效率低的缺点。算法通过计算支持向量的共享最近邻相似度,去除冗余支持向量,克服了在增量学习过程中不断加入相似文本特征向量而导致增量学习的训练时间消耗加大、分类效率下降的问题。实验结果表明,该方法在保证分类精度的前提下,有效提高了支持向量机的训练效率和分类效率。 相似文献
4.
5.
SVM增量学习算法研究 总被引:1,自引:0,他引:1
SVM是在模式分类中表现优秀的一种分类方法。通过对现有SVM的两种增量算法的分析,给出了改进措施,在此基础上结合类加权思想.提出了一种新的加权增量SVM学习算法。并将其应用于Web文本分类中。 相似文献
6.
SVM是在模式分类中表现优秀的一种分类方法。通过对现有SVM的两种增量算法的分析,给出了改进措施,在此基础上结合类加权思想,提出了一种新的加权增量SVM学习算法。并将其应用于Web文本分类中。 相似文献
7.
8.
9.
基于SVM(support vector machine)理论的分类算法,由于其完善的理论基础和良好的试验结果,目前已逐渐引起国内外研究者的关注.深入分析了SVM理论中SV(support vector,支持向量)集的特点,给出一种简单的SVM增量学习算法.在此基础上,进一步提出了一种基于遗忘因子α的SVM增量学习改进算法α-ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识,使得对样本进行有选择地遗忘成为可能.理论分析和实验结果表明,该算法能在保证分类精度的同时,有效地提高训练速度并降低存储空间的占用. 相似文献
10.
11.
一种SVM增量学习淘汰算法 总被引:1,自引:1,他引:1
基于SVM寻优问题的KKT条件和样本之间的关系,分析了样本增加后支持向量集的变化情况,支持向量在增量学习中的活动规律,提出了一种新的支持向量机增量学习遗忘机制--计数器淘汰算法.该算法只需设定一个参数,即可对训练数据进行有效的遗忘淘汰.通过对标准数据集的实验结果表明,使用该方法进行增量学习在保证训练精度的同时,能有效地提高训练速度并降低存储空间的占用. 相似文献
12.
提出了一种改进的支持向量机增量学习算法。分析了新样本加入后,原样本和新样本中哪些样本可能转化为新支持向量。基于分析结论提出了一种改进的学习算法。该算法舍弃了对最终分类无用的样本,并保留了有用的样本。对标准数据集的实验结果表明,该算法在保证分类准确度的同时大大减少了训练时间。 相似文献
13.
利用SVM对大规模数据进行训练时,需要占用很大的内存空间,甚至会因内存不够而无法训练。为此,提出了将大规模数据分块求解,然后将分块求解的结果进行信息融合的新方法。首先训练得到各模块的支持向量,将所有支持向量进行融合,得到决策模型和一组支持向量。当有新的数据加入时,将其作为一个子模块,训练得到该模块的支持向量,与原模型中获得的支持向量进行融合,训练得到新的决策模型。利用KDDCUP99数据进行实验,结果表明该方法的测试精度与在所有数据集上训练的精度相当,花费时间少,适用于增量学习。 相似文献
14.
支持向量机由于其自身的特点使其在许多应用中表现出了特有的优势,是目前研究的热点.由于标准的SVM学习算法并不直接支持增量式学习,所以研究有效的SVM增量学习方法具有重要理论意义和实用价值.对SVM增量学习中动态目标学习的有关问题进行了深入讨论,定义了静态目标学习与动态目标学习.针对动态目标学习提出了概念迁移问题,给出了SVM增量学习概念迁移的教学表达.讨论和分析了现有的SVM增量学习方法、以及目前处理SVM增量学习中概念迁移问题的方法并得出了结论. 相似文献
15.
分析了支持向量的性质和增量学习过程,提出了一种新的增量学习算法,舍弃了对最终分类无用的样本,在保证测试精度的同时减少了训练时间.最后的数值实验和应用实例说明该算法是可行、有效的. 相似文献
16.
17.
针对传统的增量式支持向量机(Incremental Support Vector Machine,ISVM)在处理数据集时易受数据噪声和学习过程中振荡问题影响的缺点,将改进的核函数U-RBF和构造备用集的同心圆方法相结合,提出了基于备用集的增量式支持向量机(Reserved Set-Incremental Support Vector Machine,RS-ISVM)方法.该方法首先将特征属性的均值和均方差值嵌入到核函数RBF中,并通过同心圆方法将后续学习过程中最有可能成为支持向量的样本划入备用集.入侵检测实验证明RS-ISVM能够降低学习过程的振荡现象,提高了学习的速度,有非常好的性能和可靠性. 相似文献