首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
木塑复合材料界面相容剂的研究进展   总被引:1,自引:0,他引:1  
石恒冲  李斌 《化学与粘合》2007,29(1):44-48,62
木塑复合材料是一种新型的材料,由于其优越的综合性能而越来越受人们所关注.主要介绍了国内外木塑复合材料界面相容剂的分类及其在复合材料中的应用、表征等方面的研究进展.其中,界面相容剂在木塑复合材料中的表征手段主要介绍了静态力学性能测试、动态力学热分析测试(DMA)、接触角测定、扫描电镜(SEM)观测法、傅利叶红外光谱法(FTIR)测定以及X射线光电子能谱法(XPS)测定,并重点闸述了接枝改性聚合物型界面相容剂的制备、反应机理、表征等.闸述了国内木塑复合材料界面相容剂的发展状况,最后介绍了木塑复合材料界面相容剂的发展趋势.  相似文献   

2.
以回收高密度聚乙烯(HDPE)塑料为基体,以木粉为填料,添加不同种类的纳米填料和自主合成的纳米填料处理剂,采用双螺杆挤出造粒后模压成型工艺制备纳米木塑复合材料。研究了不同种类的纳米填料、纳米填料处理剂含量等对纳米木塑复合材料力学性能的影响,并对材料断面结构进行了SEM分析。结果表明:纳米填料处理剂能够提高材料的界面相容性,当处理剂含量为2.5%和纳米蒙脱土含量为10%时,材料的力学性能达到最大值。  相似文献   

3.
瑞士的Lonza公司开发出一种有机润滑剂,Glycolube WP 2200,可以帮助木塑复合材料(WPC)的加工。  相似文献   

4.
综述了近年来国内外聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)基木塑复合材料的配合技术的研究进展。对包括基体塑料的组成,木质材料的品种、来源、用量,相容剂和加工助剂等影响木塑复合材料的性能的主要因素进行了分析讨论。  相似文献   

5.
国内外木塑复合材料研究进展   总被引:5,自引:0,他引:5  
对目前国内外木塑复合材料的木质纤维表面改性、界面相容性改性、助剂和老化性研究进展情况进行了综述,介绍了利用各种废弃物制备木塑复合材料的方法.  相似文献   

6.
木塑复合材料的研究进展   总被引:3,自引:0,他引:3  
木塑复合材料(WPC)是一种新型环保材料,具有优异的综合性能,近几年得到了迅速发展。本文就该材料的原料组成、加工工艺、性能及应用等国内外技术现状进行了全面阐述,总结了前人的研究结果,分析了不足并展望了未来。  相似文献   

7.
木塑复合材料的力学性能、微观结构与流变性能的研究   总被引:1,自引:0,他引:1  
以高密度聚乙烯(HDPE)和木粉为原料制备了木塑复合材料。研究了木粉、相容剂含量对木塑复合材料力学性能、流变性能及微观结构的影响。结果表明:木粉含量的增加,可提高复合材料的刚性、熔体黏度以及剪切敏感性,但韧性有所降低;而添加适量的相容剂改善了复合材料的界面微观结构,从而改善了木塑复合材料的力学性能,而且还在一定程度上改善了复合材料的加工流动性。  相似文献   

8.
木塑复合材料(WPC)是一种新型环保材料,由于兼备了木质材料及塑料的性能及加工优点,在近十年来得到大量应用,由于构成WPC的主要成分之间存在较大表面性能差异,WPC界面性能不稳定,在室外及潮湿条件下容易老化,关于WPC老化性能的研究也越来越受到重视。综述国了内外WPC老化性能的研究进展,其中包括WPC老化褪色机理、光稳定剂对WPC老化褪色的影响、WPC老化力学性能变化机理、霉菌对WPC老化性能的影响等七个方面,并对WPC老化性能研究的未来趋势进行了展望。  相似文献   

9.
木粉对PVC木塑复合材料力学性能影响   总被引:8,自引:0,他引:8  
采用电镜扫描观察了3种木粉的纤维细胞尺寸及其木粉微观形态。研究了木粉粒度、微观特性以及木粉添加量对了聚氯乙烯(PVC)木塑复合材料力学性能的影响。结果表明,木粉表面裸露的微细纤维增加和粒度减小,有助于提高木塑复合材料力学强度;加入少量木粉使木塑复合材料力学性能降低,但随着木粉添加量的增大,木塑复合材料的抗弯性能和拉伸强度上升;木塑复合材料的冲击强度随木粉含量增加而下降。  相似文献   

10.
研究了马来酸酐(MAH)接枝乙烯-1-辛烯共聚物(POE)(POE-g-MAH)、氯化聚乙烯、乙烯-乙酸乙烯共聚物(EVA)分别作相容剂时对高密度聚乙烯(HDPE)基木塑复合材料力学性能和加工流变性能的影响,并用扫描电子显微镜观察了试样冲击断面。结果表明:3种相容剂均能促进松木粉在HDPE中的分散,改善松木粉与HDPE的相容性,从而提高了复合材料的力学性能和加工性能;其中,POE-g-MAH对复合材料的力学性能改善效果最明显,EVA能较好地改善复合材料的加工流动性;相容剂最佳用量为3.0~6.0phr。  相似文献   

11.
讨论了两种润滑体系在PE(聚乙烯)木塑复合材料中的应用,测试了材料的物理性能和加工性能,结果发现不同润滑剂对PE木塑复合材料的影响。  相似文献   

12.
木塑复合材料应用现状及发展趋势   总被引:1,自引:0,他引:1  
介绍了国内外木塑复合材料的应用现状及最新研究成果,总结了近年来木塑复合制品行业面临的问题,对木塑复合材料的发展前景进行了展望。  相似文献   

13.
户外木塑复合材料的研究进展   总被引:2,自引:0,他引:2  
雷彩红  雷芳  陈福林 《塑料》2007,36(1):22-26
综述了户外木塑复合材料的发展现状,介绍了木塑复合材料在户外环境真菌、湿度、紫外线、冰冻-解冻气候条件下性能的变化,总结了木粉种类、含量和成型方法对其户外使用性能的影响,并详述了用于户外木塑复合材料的原材料包括树脂基体和助剂的研究情况。  相似文献   

14.
本文讨论了两种润滑体系在PE木塑复合材料中的应用,测试了材料的力学性能和加工性能。结果发现,润滑剂需用量大约2%、并保持物料较快塑化、形成较大的挤出压力,才能使PE木塑复合材料获得较高的挤出速度和较好的外观质量,产品的力学性能则基本不受润滑剂品种的影响。  相似文献   

15.
润滑剂对PE木塑复合材料力学性能和加工性能的影响   总被引:8,自引:0,他引:8  
本文讨论了两种润滑体系在PE木塑复合材料中的应用,测试了材料的力学性能和加工性能。结果发现,润滑剂需用量要约2%、并保持物料较快塑化、形成较大的挤出压力,才能使PE木塑复合材料获得较高的挤出速度和较好的外观质量,产品的力学性能则基本不受润滑剂品种的影响。  相似文献   

16.
研究了加工助剂60NSF,TKM80,WB16对聚丙烯(PP)基木塑复合材料机械性能和流变性能的影响。结果表明,60NSF,TKM80,WB16这3种助剂中TKM80对木塑复合材料机械性能的提高最大,与未加TKM80比较,当TKM80用量为7.5份时,木塑复合材料的拉伸强度提高20.9%,冲击强度提高55.6%,加工流变性得到很大的提高;从试样的冲击断裂面的扫描电镜照片,可以看出TKM80能够提高木粉在PP基体中的分散性,并改善PP与木粉之间的相容性。  相似文献   

17.
分别以木粉、竹粉、稻壳粉三种木质纤维为填料,高密度聚乙烯(PE–HD)为基体,采用模压成型法制备木塑复合材料,对复合材料的热膨胀性能和热失重特性进行了研究。结果表明,三种木质纤维填充PE–HD复合材料的线性热膨胀系数顺序为:PE–HD/木粉复合材料PE–HD/竹粉复合材料PE–HD/稻壳粉复合材料;PE–HD/木粉复合材料的线性热膨胀系数随着木粉含量的增加和木粉粒径的减小而减小,木粉质量分数为65%、粒径为150μm时,复合材料的线性热膨胀系数最小。PE–HD基木塑复合材料的热分解过程分为两个阶段,第一阶段主要为木质纤维分解阶段,第二阶段主要是PE–HD分解阶段;PE–HD/木粉复合材料起始失重温度高于竹粉和稻壳粉填充的复合材料;且PE–HD/木粉复合材料中木粉含量越高,第一阶段分解速率及失重量越大;木粉粒径越小,复合材料起始分解温度越低。  相似文献   

18.
影响聚丙烯基木塑复合材料力学性能因素   总被引:10,自引:0,他引:10  
研究了偶联剂、相容剂、木粉用量和木质填料种类对以聚丙烯(PP)为基体树脂制备小塑复合材料力学性能的影响。结果表明,以硅烷偶联剂处理木粉或直接加入相容剂均使复合材料力学性能得到提高;木粉用量的提高使复合材料冲击强度下降,弯曲强度、弯曲模量、拉伸强度则大幅提高;在分别以粒径为0.14mm木粉和0.22mm木粉、竹粉、花生壳粉、稻壳粉制备复合材料,以粒径为0.14mm木粉与PP制备的复合材料力学性能最好。  相似文献   

19.
以竹片为原料,复合聚氯乙烯(PVC)薄膜,通过热压–冷压工艺制备了新型PVC木塑复合材料。通过改变热压时间、热压温度和PVC添加量,研究了不同工艺条件下所制备的PVC木塑复合材料的力学性能和界面性质。实验结果表明,制备厚度为1 cm,面积为10 cm2的木塑复合材料的最佳加工工艺为:在180℃的热压温度下热压时间750 s,PVC添加量为0.3 g。加入硅烷偶联剂KH550可以有效提高PVC木塑复合材料的力学性能和界面相容性,在最佳加工条件下加入KH550为1%时,材料的胶合强度为1.212 MPa。  相似文献   

20.
综述了木塑复合材料的生产工艺,分析了影响木塑复合材料力学性能和耐久性的因素,阐述了木塑复合材料在建筑工程中的应用,展望了未来木塑复合材料的研究方向。指出今后木塑复合材料的研究应主要集中在耐久性机理的进一步探索以及提高木塑复合材料耐久性的改性和结构设计方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号