首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对从PTA残渣中回收钴的工艺进行了研究。通过技术经济分析,确定了水浸PTA残渣-蒸发除有机酸-P204萃取分离钴、锰-P204萃取富集钴-碳酸盐沉钴-醋酸溶解转化结晶制备四水醋酸钴的工艺流程。试验结果表明,钴总回收率大于80%,产品质量符合我国“HG/I2032-91”标准,可用于PTA生产过程中的催化剂。  相似文献   

2.
分别考察了微生物浸出液中主要杂质离子(Mg2+,Ca2+,Fe2+,Fe3+)对Cyanex272-P507协萃体系、Cyanex272萃取体系和P507萃取体系在低p H值条件下分离回收模拟微生物浸出液中低含量钴镍的影响。研究发现杂质离子对3种萃取体系的钴萃取率和钴镍分离系数均有较大影响,其中Fe3+的影响最大,而杂质离子对镍萃取率影响不大,其仍保持在较低水平。3个萃取体系中Cyanex272萃取体系是受杂质离子影响最严重的萃取体系,少量杂质离子的增加就会使其钴镍分离系数以及钴萃取率发生显著的下降,而Cyanex272-P507协萃体系受杂质离子影响次之,P507萃取体系受影响最小。在杂质离子浓度较低时,相对于其他两个体系,Cyanex272-P507协萃体系可以实现更低的杂质离子萃取率。运用Cyanex272-P507协萃体系萃取分离钴镍时,为尽量降低杂质离子对钴萃取率和钴镍分离系数的影响,钴镍料液中所含杂质离子Mg2+,Ca2+,Fe2+,Fe3+的最高含量分别是:90.0,21.0,52.0,8.8 mg·L-1。  相似文献   

3.
从钴镍废料电溶液中分离回收钴镍   总被引:9,自引:0,他引:9  
方成开  谭佩君 《湿法冶金》2003,22(4):169-182
研究了从钴镍废料电溶液中回收钴、镍,采用的流程为电溶液-针铁矿法除铁-P204萃取除杂-7401萃取分离钴镍-碳酸盐沉淀钴、镍。试验结果表明,采用该方法,可将溶液中的钴和镍有效分离并回收,钴、镍回收率均达99%。无有毒废气、废水产生,废渣少量,可直接外排。  相似文献   

4.
研发了一种从钴渣中提取硫酸钴的新工艺,即钴渣活化焙烧-硫酸浸出-溶剂萃取工艺.在活化焙烧温度900 ℃,活化剂添加量2∶1(添加剂与钴渣的质量比),焙烧时间1 h;硫酸浸出液固体积质量比5∶1,硫酸浓度20%,浸出温度90 ℃,浸出时间1.5 h条件下,钴浸出率为98.8%.然后采用P204萃取除杂-P507萃取分离钴、镍工艺得到纯净的高浓度钴溶液,蒸发结晶后得到质量符合HG3-914-78化学纯度要求的硫酸钴.  相似文献   

5.
吉鸿安 《甘肃冶金》2012,34(4):63-66
开展了锂离子二次电池正极废旧材料中钴和锂的回收研究。采用"碱浸除铝-硫酸体系还原浸出-P204萃取"的化学浸取、溶剂萃取法,可使钴和锂得到有效回收。铝的总去除率在98%以上,钴和锂的浸出率大于98%,体系钴的总收率在94%以上;控制P204萃取平衡体系水相的pH值在5.7左右,相比3:2,可得到良好的萃取分离效果。  相似文献   

6.
废高温镍钴合金浸出液净化试验研究   总被引:4,自引:4,他引:0  
在"苏打焙烧-碱浸出-氯气浸出-TBP萃取除铁-中和水解除铬-P204萃取除微量杂质-N235萃取分离镍、钴"处理废高温镍钴合金工艺的基础上,重点研究了废高温镍钴合金浸出液的净化工艺,确定了废高温镍钴合金浸出液净化的较优工艺技术参数。采用该净化工艺条件可将浸出液中的杂质元素有效地脱除,处理后所得镍、钴溶液成份满足某公司镍、钴产品生产的要求。  相似文献   

7.
本文研究了二(2-乙基己基)二硫代磷酸与磷酸三丁酯(TBP)对钴(Ⅱ)的协同萃取效应。实验结果表明,TBP单独对钴(Ⅱ)不萃取;在烷基硫代磷酸单独萃取钴(Ⅱ)时,萃合物组成为CoA_2[A代表二(2-乙基己基)二硫代磷酸根],萃取反应的平衡常数对数值lgK_1=-0.83。当两种萃取剂混合萃取钴(Ⅱ)时,有明显的协同效应,萃合物组成为CoA_2·B(B代表TBP),萃取反应的平衡常数的对数值lgK_2=1.81。协同萃取机理为加成反应:CoA_2_((0))+B_((0))=CoA_2B_((0))。  相似文献   

8.
研究钴 与 1-( 2-吡啶偶氮 )- 2- 萘酚 (PAN)在石蜡相中的显色反应 ,借此建立了一种测量痕量钴 的新型固相光度法。在pH 10.4的Na2 B4 O7-NaOH缓冲溶液中 ,钴 与PAN反应生成的有色络合物能定量被石蜡萃取 ,钴含量在 0~ 0.3 2mg/L范围内符合比尔定律 ,方法的检出限为 1.11× 10 - 6 g/L。本法已用于粉煤灰中痕量钴的测定 ,获得满意结果  相似文献   

9.
从废高温镍钴合金中浸出镍和钴的试验研究   总被引:1,自引:0,他引:1  
研究了采用"苏打焙烧-碱浸出铝、钼-氯气浸出钴、镍、铁等-TBP萃取除铁-中和水解除铬-P204萃取除微量杂质-N235萃取分离镍、钴"工艺处理废高温镍钴合金,重点考察了从废镍钴合金中浸出镍和钴,讨论了苏打焙烧温度和碱浓度对铝、钼浸出率的影响,碱浸渣氯气浸出电位、浸出时间、废合金粒度、添加剂的加入等因素对镍、钴浸出率的影响.试验确定了从废高温镍钴合金中浸出镍、钴的工艺优化条件.综合条件下,镍、钴平均浸出率分别为99.30%和97.67%,浸出渣中镍、钴质量分数平均为0.51%和0.44%.  相似文献   

10.
高温合金废料中铜钴的回收   总被引:3,自引:0,他引:3  
张愈祖  蔡传算 《铜业工程》2000,(2):34-36,16
采用电化学溶解、P2 0 4萃取除杂、P2O4萃取分离镍、钴的工艺流程 ,对钴、铜、铁含量均高的合金废料块实行了综合回收 ,能有效地综合回收制取优质的氧化钴粉、铜粉及镍粉等。  相似文献   

11.
研磨的矿样,先用15%醋酸铵溶液100毫升于95℃水浴恒温溶解分离出硫酸钴,残渣经2N的硝酸80毫升于60℃水浴加入过氧化氢(1:1)20毫升恒温1小时溶解硫化钴,余渣和滤纸灰化后用王水-氢氟酸-硫酸于聚四氟乙稀烧杯中加热浸出硅酸盐中的氧化钴,用三正辛胺-亚硝基R盐-钴络合物萃取光度法测定出钴量计算出各相钴化合物的含量。  相似文献   

12.
D.V.Koladkar等研究了用双 (2 -乙基己基 )膦酸 (PIA-8)的甲苯溶液从硫酸盐溶液中萃取钴 ( )和镍 ( )。试验表明 ,用浓度为 0 .0 3 mol/L的 PIA-8甲苯溶液萃取时 ,钴 ( )在 p H为 5 .0~ 5 .9范围内被定量萃取 ,而镍 ( )则在 p H为 6.8~ 7.0范围内被定量萃取。钴 ( )和镍 ( )的 p H0 .5值相差 1.9。用斜率分析法确定的萃合物的化学式为 Co· R2 (HR) 2 和 Ni· R2 · 2 (HR) 2 。萃取反应属阳离子交换机理。该方法可用于分离钴 ( )和镍 ( ) ,当溶液中镍的浓度是钴浓度的 2 0倍时 ,也能很好地将钴 ( )与镍 ( )分开。温度对钴 ( )萃…  相似文献   

13.
《湿法冶金》2009,28(2)
R.A.Kumbasar研究了以5,7-二溴磷-8-羟基喹啉(DBHQ)作萃取剂用乳状液膜法(ELM)从含镍和钴的氨溶液中选择性萃取和浓缩镍。乳状液膜由稀释剂(煤油)、表面活性剂(Span80)、萃取剂(DBHQ)、改性剂(磷酸三丁酯)和反萃取液(很稀的硫酸溶液,含有EDTA络合剂,缓冲pH为4.25)组成。料液中氨浓度6mol/L,其中的钴(Ⅱ)用H2O2氧化成钴(Ⅲ),pH用盐酸调整到10.0。研究了控制镍萃取的变量及其对分离工艺的影响。这些变量是膜的组成,料液中氨浓度,混合速度,表面活性剂浓度,  相似文献   

14.
Basudev Swain等研究了用Na—Cyanex272作萃取剂从混合硫酸盐溶液中溶剂萃取钴和锂,研究了不同参数,如料液pH,萃取剂浓度,料液中钴、锂离子浓度的影响,以及不同无机酸,如H2SO4,HCl,HNO3的反萃取行为。用0.03moL/L Na—Cyanex272,在平衡pH为6.90,混合溶液中硫酸钴和硫酸锂的浓度为0.01mol/L条件下萃取钴和锂的最大分离系数为62。在此条件下,钴的萃取率约84%,约8%的锂被共萃取。  相似文献   

15.
<正> 近两年来我们对 N_(530)(2-羟基-4-仲辛氧基-二苯甲酮肟)在钴、镍的氨性硫酸盐、氯化物及碳酸盐溶液中的萃取性能及其分离钴、镍的途径进行了研究,所得的实验结果表明,N_(530)是一种分离钴、镍的有效萃取  相似文献   

16.
用P204和P507脱除含钴废料中的杂质生产高纯度氯化钴   总被引:4,自引:1,他引:3  
采用硫酸溶解预先焙烧的钐钴粉 ,化学中和法除稀土、铁和钙镁后用P2 0 4萃取铜、锰、锌等杂质 ,再用P5 0 7萃取分离镍和钴 ,制得的氯化钴溶液用来制备高纯氯化钴。钴回收率大于 90 %。  相似文献   

17.
高纯钴制备工艺研究   总被引:4,自引:1,他引:3  
目前制备99.999%以上金属高纯钴的制备方法很多,主要制备工艺有萃取法,膜分离法,离子交换法,电解法,区域熔炼法等方法.但单一的提纯方法很难达到99.999%以上高纯钴.研究络合-P507萃取工艺与P507萃取工艺分离钴中镍及金属杂质,考察酸度、盐酸、硫酸体系对萃取分离影响.采用20%P507磺化煤油有机相单级萃取提纯钴,钴中Ni%为0.4%,提纯钴中Ni%可达到0.003%~0.004%;不能达99.999%要求,选择1.8%的络合剂Dmege按Co料液中所含Ni的量计算加入,得到络合后的Co溶液.采用同样萃取剂及条件,一次络合萃取分离可使金属钴的Ni%降到≤0.002%;经二次络合萃取分离可使金属钴的Ni%降到0.001%,其他金属杂质含量在检测下限.因此二次络合-萃取-电积工艺,用市售的金属钴料和普通分析纯试剂制备出纯度达99.9999%的高纯金属钴,该工艺采取单级萃取,流程短,操作简单,易控制,Co回收率高,运转费用,生产成本低,易实现工业化生产.为制备高纯金属钴提供简单、合理工艺流程.  相似文献   

18.
粉煤灰中痕量钴的催化光度法测定   总被引:3,自引:0,他引:3       下载免费PDF全文
基于在 pH1 0.0的Na2 B4O7-NaOH介质中 ,痕量Co 催化H2 O2 氧化桑色素的褪色反应 ,褪色程度与Co 量在 0.0~ 50.0 μg/L范围内呈线性关系 ,建立了一种测定痕量Co 的光度法。方法的检出限为 7.6× 1 0 -11g/mL。结合N5 3 0 萃取剂萃取分离 ,测定了粉煤灰中的微量钴。  相似文献   

19.
用N.M.C.法分离钴和镍   总被引:1,自引:1,他引:0  
用2-乙基-1-己基磷酸单2-乙基-1-己基脂(M2EHPA)从硫酸镍溶液中分离钴的方法进行了研究。M2EHPA的分离系数比D2EHPA大很多倍(D2EHPA是熟知的一种阳离子交换萃取剂)。 使用3级混合澄清装置,将含20%(体积)M2EHPA的有机试剂与含30克/升镍和12克/升钴的原始水溶液接触后,能获得这样的结果:萃余相含29.9克/升镍和0.002克/升钴,萃取相含0.14克/升镍和12克/升钴。将萃取相与含有CoSO_4的洗涤液混合,能有效地从有机相中除掉镍;与稀硫酸溶液接触很容易从有机相中反萃取出钴。在工业性设备中,是使用钴电解工序的废电解液作为反萃取液。使用N.M.C.法,反萃取液中的钴浓度被控制在100克/升左右。 根据本研究的结果,建立了一种分离钴和镍的方法。日本矿业公司利用这种方法,目前已能有效地分别生产出1300吨/年和3300吨/年高纯的钴和镍。  相似文献   

20.
以P204为萃取剂对锌钴混合溶液中的锌与钴进行萃取分离,探索了相关因素对萃取分离效果的影响。结果表明,在萃取水相pH=4、萃取相比1.0、P204浓度10%、萃取时间10min、振荡速率100r/min的条件下,锌的单级萃取率达到35%左右,而钴的萃取率仅为2%左右,通过四级萃取,锌萃取率达到98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号