共查询到18条相似文献,搜索用时 93 毫秒
1.
2.
4.
5.
6.
深插入浸罩CAS钢包流场混合特性的水模型研究 总被引:1,自引:0,他引:1
按照110t CAS钢包1/6的水模型,研究了浸罩深度(熔池液面深度0~20%)和直径(钢包底部直径的0.4~0.7)对熔池混匀时间的影响。结果表明,随着浸罩深度和直径的增加,罩内的循环流增强,在深插入浸罩(熔池液面深度的20%)条件下,钢包内流场发生显著变化,浸罩内形成了明显的循环流。通过无因次分析,得出底吹气量Q和浸罩深度H对混匀时间T影响程度的经验公式(T-T0)/T=3.13Q-0.66(H/HL)1.56。 相似文献
7.
RH真空槽底喷粉精炼将脱硫粉剂直接喷入钢液,冶金反应程度高,终点元素含量稳定,能够完成高品质钢的炉外精炼任务。对RH底喷粉过程进行数值模拟研究,探究底喷粉过程的粉剂行为及对钢液流场的影响规律,优化喷嘴布置方案,旨在推动该技术的工业化应用。研究结果表明,180°喷嘴布置方案(即下降管侧喷吹,简称方案2)的钢液环流量比0°喷嘴布置方案(即上升管侧喷吹,简称方案1)增加1.8 t/min(增量比例为1.4%);方案2的钢包最下端钢液粉剂浓度比方案1高0.2~0.9 kg/m3(增量比例为6.7%~81.8%);方案2条件下,钢包内钢液流动死区的粉剂浓度随喷嘴布置高度的降低而降低。结合粉剂收得率,确定方案2喷嘴布置高度为300 mm,此时粉剂收得率较方案1提升2.59%。 相似文献
8.
9.
10.
熔池均混时间、粉剂穿透比和粉剂停留时间是决定铁水包喷粉脱硫效率的三个基本参数。通过实验考察了喷枪喷嘴结构不同和喷枪平面位置不同条件下吹气对熔池搅拌的影响;理论分析了影响单个粉剂穿越气-液界面的主要因素,并得到在本实验粉剂粒度分布条件下理论剂穿透比的表达式。将实测粉剂穿透比与理论粉剂穿透进行比较,提出了粉剂穿透比理论值的修正公式;利用流场计算结果,回归出了粉剂停留时间与载气流量和喷嘴离包底距离的关系 相似文献
11.
180 t转炉底吹气体与熔池相互作用的水模型实验 总被引:1,自引:0,他引:1
通过10:1水模型研究了转炉底吹流量0.55~0.75 m3/h和底吹喷嘴4孔对称、2孔对称、2孔不对称分布以及喷嘴位置d/D=0.1~0.9(d-喷嘴所在同心圆直径,D-转炉熔池直径)对熔池均混时间的影响.结果表明,d/D=0.3,底吹流量0.70 m3/h,4孔对称底吹时熔池搅拌效果最佳;2孔不对称喷吹时,最佳流量为0.60~0.70m3/h,最佳喷嘴位置d/D=0.3~0.5;2孔对称喷吹时最佳流量与喷嘴位置分别为0.65 m3/h和d/D=0.7. 相似文献
12.
13.
14.
15.
16.
17.
18.
吹气管内径对RH精炼过程钢液流动和混合特性的影响 总被引:2,自引:0,他引:2
水力学模型和90t RH精炼装置原型的线性比例为1:5。模型吹气孔直径分别为0.8mm和1.2mm。试验结果表明,在给定的吹气量Qg、上升和下降插入管直径Da和Dd下,吹气孔直径din的增大并不显著改变RH精炼过程中钢液流动特征,但是环流量Ql随吹气孔直径din的增大而增大,其关系式为:Q1=2.40Qg^0.23Du^0.72Dd^0.88din^0.13;0.8mm和1.2mm孔径下的混合时间τm与搅拌能密度ε的关系分别为τin∝ε^0.5和τm∝ε^0.49 相似文献