首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the influence of oxygen-containing (6·10−3 wt.% O) lead on the corrosion of Armco iron and Fe−16Cr, Fe−16Cr−1Al alloys at a temperature of 650°C under stationary conditions. The front of corrosion propagates according to a linear law and this process is periodically repeated. In each period, an oxide film based on Fe3O4 magnetite is formed on the surface of the metal and lead penetrates into the suboxide zone. This leads to the exfoliation the external oxide film and then the process is repeated. Under the indicated testing conditions, alloying with chromium and aluminum intensifies the process of corrosion in iron. Karpenko Physicomechanical Institute, Ukrainian Academy of Sciences, L'viv. Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 33, No. 2, pp. 84–88, March–April, 1997.  相似文献   

2.
Doubly doped LaErO3 ceramics, La0.9Ba0.1Er1−x Mg x O3−α (x = 0.05, 0.10, 0.15, 0.20), were synthesized by solid-state reaction method and characterized by X-ray diffraction (XRD). The samples have a single orthorhombic perovskite-type structure. The conduction behavior was investigated using various electrochemical methods including AC impedance spectroscopy, gas concentration cell, isotope effect of hydrogen, and hydrogen electrochemical permeation (pumping) in the temperature range of 500–1000 °C. The results indicated that specimens were pure ionic conductors under low oxygen partial pressure (about 10−7–10−20 atm) and mixed conductors of proton, oxide ion, and electron hole under high oxygen partial pressure (about 10−5–1 atm). The pure ion conduction of the ceramics in hydrogen atmosphere was confirmed by electromotive force method of hydrogen concentration cell, and the observed emf values coincided well with the theoretical ones. The conductivity in H2O–Ar atmosphere was higher than that in D2O–Ar atmosphere, exhibiting an obvious isotope effect and proton conduction in water vapor containing atmosphere. It has been confirmed by electrochemical hydrogen permeation (hydrogen pumping) experiment that the ceramics were mainly proton conductors in hydrogen containing atmosphere. Whereas in dry oxygen-containing atmosphere, observed emf values of the oxygen concentration cell were far lower than the theoretical ones, indicating that the ceramics were mixed conductors of electron hole and oxide ion.  相似文献   

3.
New NASICON type materials of composition, Li3−2x Al2−x Sb x (PO4)3 (x = 0·6 to 1·4), have been prepared and characterized by powder XRD and IR. D.C. conductivities were measured in the temperature range 300–573 K by a two-probe method. Impedance studies were carried out in the frequency region 102−106 Hz as a function of temperature (300–573 K). An Arrhenius behaviour is observed for all compositions by d.c. conductivity and the Cole-Cole plots obtained from impedance data do not show any spikes on the lower frequency side indicating negligible electrode effects. A maximum conductivity of 4·5 × 10−6 S cm−1 at 573 K was obtained for x = 0·8 of the Li3−2x Al2−x Sb x (PO4)3 system.  相似文献   

4.
Transparent and conducting SnO2 films are prepared at 500°C on quartz substrates by chemical vapour deposition technique, involving oxidation of SnCl2. The effect of oxygen gas flow rate on the properties of SnO2 films is reported. Oxygen with a flow rate from 0·8–1·35 lmin−1 was used as both carrier and oxidizing gas. Electrical and optical properties are studied for 150 nm thick films. The films obtained have a resistivity between 1·72 × 10−3 and 4·95 × 10−3 ohm cm and the average transmission in the visible region ranges 86–90%. The performance of these films was checked and the maximum figure of merit value of 2·03 × 10−3 ohm−1 was obtained with the films deposited at the flow rate of 1·16 lmin−1.  相似文献   

5.
Thin films of copper aluminum oxide (CuAlO2) were prepared on glass substrates by dc magnetron sputtering at a substrate temperature of 523 K under various oxygen partial pressures in the range 1 × 10−4–3 × 10−3 mbar. The dependence of cathode potential on the oxygen partial pressure was explained in terms of oxidation of the sputtering target. The influence of oxygen partial pressure on the structural, electrical and optical properties was systematically studied. p-Type CuAlO2 films with polycrystalline nature, electrical resistivity of 3.1 Ω cm, Hall mobility of 13.1 cm2 V−1 s−1 and optical band gap of 3.54 eV were obtained at an oxygen partial pressure of 6 × 10−4 mbar.  相似文献   

6.
The high temperature ceramic oxide superconductor YBa2Cu3O7-x (1–2–3 compound) is generally synthesized in an oxygen-rich environment. Hence any method for determining its thermodynamic stability should operate at a high oxygen partial pressure. A solid-state cell incorporating CaF2 as the electrolyte and functioning under pure oxygen at a pressure of 1·01 × 105 Pa has been employed for the determination of the Gibbs’ energy of formation of the 1–2–3 compound. The configuration of the galvanic cell can be represented by: Pt, O2, YBa2Cu3O7−x , Y2BaCuO5, CuO, BaF2/CaF2/BaF2, BaZrO3, ZrO2, O2, Pt. Using the values of the standard Gibbs’ energy of formation of the compounds BaZrO3 and Y2BaCuO5 from the literature, the Gibbs’ energy of formation of the 1–2–3 compound from the constituent binary oxides has been computed at different temperatures. The value ofx at each temperature is determined by the oxygen partial pressure. At 1023 K for O content of 6·5 the Gibbs’ energy of formation of the 1–2–3 compound is −261·7 kJ mol−1.  相似文献   

7.
Cadmium ferrite, CdFe2O4, is synthesized by urea combustion method followed by calcination at 900°C and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The Li-storage and cycling behaviour are examined by galvanostatic cycling, cyclic voltammetry (CV) and impedance spectroscopy in the voltage range, 0·005–3·0 V vs Li at room temperature. CdFe2O4 shows a first cycle reversible capacity of 870 (± 10) mAhg−1 at 0·07C-rate, but the capacity degrades at 4 mAhg−1 per cycle and retains only 680 (± 10) mAhg−1 after 50 cycles. Heat-treated electrode of CdFe2O4 (300°C; 12 h, Ar) shows a significantly improved cycling performance under the above cycling conditions and a stable capacity of 810 (± 10) mAhg−1 corresponding to 8·7 moles of Li per mole of CdFe2O4 (vs theoretical, 9·0 moles of Li) is maintained up to 60 cycles, with a coulombic efficiency, 96–98%. Rate capability of heat-treated CdFe2O4 is also good: reversible capacities of 650 (± 10) and 450 (± 10) mAhg−1 at 0·5 C and 1·4 C (1 C = 840 mAg−1) are observed, respectively. The reasons for the improved cycling performance are discussed. From the CV data in 2–15 cycles, the average discharge potential is measured to be ∼0·9 V, whereas the charge potential is ∼2·1 V. Based on the galvanostatic and CV data, ex situ-XRD, -TEM and -SAED studies, a reaction mechanism is proposed. The impedance parameters as a function of voltage during the 1st cycle have been evaluated and interpreted. Dedicated to Prof. C N R Rao on his 75th birthday, and his contributions to science for the past 56 years  相似文献   

8.
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200–210 °C using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA·h·g−1 after 21 cycles at a rate of 20 mA·g−1. Furthermore, after the nanotubes were calcined (600 °C, 4 h) or reduced (180 °C, 10 h), the corresponding discharge capacities increased to 277.2 mA·h·g−1 and 308.5 mA·h·g−1, respectively.   相似文献   

9.
A large number of thin films of cadmium oxide have been prepared on glass substrates by spray pyrolysis method. The prepared films have uniform thickness varying from 200–600 nm and good adherence to the glass substrate. A systematic study has been made on the influence of thickness on resistivity, sheet resistance, carrier concentration and mobility of the films. The resistivity, sheet resistance, carrier concentration and mobility values varied from 1·56–5·72×10−3 Ω-cm, 128–189 Ω/□, 1·6–3·9×1021 cm−3 and 0·3–3 cm2/Vs, respectively for varying film thicknesses. A systematic increase in mobility with grain size clearly indicates the reduction of overall scattering of charge carriers at the grain boundaries. The large concentration of charge carriers and low mobility values have been attributed to the presence of Cd as an impurity in CdO microcrystallites. Using the optical transmission data, the band gap was estimated and found to vary from 2·20–2·42 eV. These films have transmittance around 77% and average reflectance is below 2·6% in the spectral range 350–850 nm. The films aren-type and polycrystalline in nature. SEM micrographs of the CdO films were taken and the films exhibit clear grains and grain boundary formation at a substrate temperature as low as 523 K.  相似文献   

10.
This article presents, the fabrication of perfectly hexagonal zinc oxide nanorods performed via solution process using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT) at various concentrations of i.e. 1 × 10−3 to 10 × 10−2 M in 50 mL distilled water and refluxed at 100 °C for 1 h. We used HMT because it acts as a template for the nucleation and growth of zinc oxide nanorods, and it also works as a surfactant for the zinc oxide structures. The X-ray diffraction patterns clearly reveal that the grown product is pure zinc oxide. The diameters and lengths of the synthesized nanorods lie in the range of 200–800 nm and 2–4 μm, respectively as observed from the field emission scanning electron microscopy (FESEM). The morphological observation was also confirmed by the transmission electron microscopy (TEM) and clearly consistent with the FESEM observations. The chemical composition was analyzed by the FTIR spectroscopy, and it shows the ZnO band at 405 cm−1. On the basis of these observations, the growth mechanism of ZnO nanostructures was also proposed.  相似文献   

11.
We study the high-temperature interaction (650°C, 500 h) of 20Kh13 chromium steel with melts of stagnant lead saturated with oxygen (C O [Pb] ≈ 6 · 10−3 wt.%). First (up to 200 h), separate islands of Me3O4 oxides (Me: Fe, Cr, Pb) are formed on the steel surface. In the course of time (for 500 h), these islands completely cover the steel surface as a result of lateral growth. The upper part of the oxide layer is formed by the (Fe1 − x Pbx) O · Fe2 O3 complex oxide growing from the initial “solid-metal—melt” interface toward the liquid-metal medium. The inner part of the oxide layer is spinel [(Fe1 − x Pbx) O · (Fe1 − y Cry)2O3] enriched with chromium and formed on the basis of the matrix. Both layers symmetrically grow with respect to the initial “solid-metal—melt” interface. Lead does not penetrate into the steel matrix and is fixed only in the oxide layer. __________ Translated from Fizyko-Khimichna Mekhanika Materialiv, Vol. 41, No. 5, pp. 36–40, September–October, 2005.  相似文献   

12.
This paper reports an investigation of the electrophysical properties of metal-dielectric-semiconductor varicaps with an yttrium oxide dielectric, prepared by resistive vacuum evaporation of the rare-earth metal with subsequent thermal oxidation of the film in air at 500–550 °C. It is found that the electrical conductivity of the samples follows the Poole-Frenkel law. High-frequency capacitance-voltage characteristics are used to determine the specific capacitance of the dielectric, C 0=0.027–0.03 μF/cm2, the slope of the capacitance-voltage characteristic, dC/dV=35–40 pF/V, the fixed charge in the dielectric, Q f=(1.7−2.7)×10−8 C/cm2, and the density of surface states at the flat-band potential, N ss=(1−2)×1011 cm−2·eV−1. The capacitance tuning range factor for the metal-dielectric-semiconductor varicaps is 2.5–3. These structures are shown to be applicable as metal-dielectric-semiconductor varicaps with a low control voltage and a high quality factor. Pis’ma Zh. Tekh. Fiz. 23, 50–55 (June 26, 1997)  相似文献   

13.
Several thermophysical properties of molten silicon measured by the high-temperature electrostatic levitator at JPL are presented. They are density, constant-pressure specific heat capacity, hemispherical total emissivity, and surface tension. Over the temperature range investigated (1350<T m<1825 K), the measured liquid density (in g·cm−3) can be expressed by a quadratic function,p(T)=p m−1.69×10−4(T−T m)−1.75×10−7(T−T m)2 withT m andp m being 1687 K and 2.56 g·cm−3, respectively. The hemispherical total emissivity of molten silicon at the melting temperature was determined to be 0.18, and the constant-pressure specific heat was evaluated as a function of temperature. The surface tension (in 10−3 N·m−1) of molten silicon over a similar temperature range can be expressed by σ(T)=875–0.22(T−T m). Invited paper presented at the Fourth Asian Thermophysical Properties Conference, September 5–8, 1995, Tokyo, Japan.  相似文献   

14.
La0.9Ba0.1Ga1–x Mg x O3–α (0 ≤ x ≤ 0.25) was prepared by the microemulsion method. A single phase of LaGaO3 perovskite structure was formed when x was ≥0.15. Electrochemical hydrogen permeation (hydrogen pumping) proved that La0.9Ba0.1Ga1–x Mg x O3–α had proton conduction, and the proton conduction was measured by AC impedance spectroscopy method from 400 to 800 °C in hydrogen atmospheres. Among these samples, La0.9Ba0.1Ga0.8Mg0.2O3–α has the highest proton conductivity with the values of 9.51 × 10−4 to 4.68 × 10−2 S cm−1 at 400–800 °C. Ammonia was synthesized from nitrogen and hydrogen at atmospheric pressure in an electrolytic cell using La0.9Ba0.1Ga0.8Mg0.2O3–α as electrolyte. The rate of NH3 formation was 1.89 × 10−9 mol s−1 cm−2 at 520 °C upon imposing a current of 1 mA through the cell.  相似文献   

15.
Measurements were made of the absorption of microwave power in a discharge plasma generated using tapwater electrodes in atmospheric-pressure air in order to determine the electron density. The high-voltage discharge burned in a bulk (diffuse) form with a lower current density than an arc discharge. This type of discharge with nonmetallic liquid electrodes is extremely promising for various technical applications. Regimes with I=50–60 mA and voltages U=2.9–3.1 kV were studied. The measurements were made at probe radiation frequencies F=29.6 and 35.2 GHz. A two-conductor transmission line was used to localize the microwave power in the plasma. An estimate was obtained for the average electron density in the central part of the discharge (4×1011)<n e <,(7×1011)cm−3. This result shows good agreement with the results of earlier probe measurements. Pis’ma Zh. Tekh. Fiz. 24, 52–57 (December 12, 1998)  相似文献   

16.
Au has been loaded (1% wt.) on different commercial oxide supports (CuO, La2O3, Y2O3, NiO) by three different methods: double impregnation (DIM), liquid-phase reductive deposition (LPRD), and ultrasonication (US). Samples were characterised by N2 adsorption at −196 °C, high-resolution transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectrometry, high-angle annular dark-field imaging (Z-contrast), X-ray diffraction, and temperature programmed reduction. CO oxidation was used as a test reaction to compare the catalytic activities. The best results were obtained with Au loaded by DIM on the NiO support, with an activity of 7.2 × 10−4 molCO·gAu −1·s−1 at room temperature. This is most likely related to the Au nanoparticle size being the smallest in this catalyst (average 4.8 nm), since it is well known that gold particle size determines the catalytic activity. Other samples, having larger Au particle sizes (in the 2–12 nm range, with average sizes ranging from 4.8 to 6.8 nm), showed lower activities. Nevertheless, all samples prepared by DIM had activities (from 1.1 × 10−4 to 7.2 × 10−4 molCO·gAu −1·s−1, at room temperature) above those reported in the literature for gold on similar oxide supports. Therefore, this method gives better results than the most usual methods of deposition-precipitation or co-precipitation.   相似文献   

17.
In this work, pH dependent evolution of tungsten oxide (WO3) nanostructures is being reported along with physical characteristics. The synthesis was carried out via an inexpensive solvothermal cum chemical reduction route, with sodium tungstate (Na2WO4) and cetyl trimethyl ammonium bromide (C19H42NBr) as main reactants. The X-ray diffraction, together with transmission electron microscopic studies have revealed formation of regular polyhedral nanocrystalline structures and fractals as one goes from higher pH (= 5·5) to lower pH (= 2) values. The average crystallite size, as calculated through Williamson–Hall plots, was varied within 2·8–6·8 nm for different pH samples. Fourier transform infrared spectroscopy reveals in-plane bending vibration δ (W–OH), observable at ∼1630 cm − 1 and strong stretching ν (W–O–W) located at ∼814 cm − 1. Raman spectroscopy has divulged WO3 Raman active optical phonon modes positioned at ∼717 and 805 cm − 1. The thermochromic and photochromic properties of the nanoscale WO3 sample prepared at pH = 5·5, are also highlighted.  相似文献   

18.
Transparent conducting tin oxide thin films have been prepared by electron beam evaporation and spray pyrolysis methods. Structural, optical and electrical properties were studied under different preparation conditions like substrate temperature, solution flow rate and rate of deposition. Resistivity of undoped evaporated films varied from 2.65 × 10−2 ω-cm to 3.57 × 10−3 ω-cm in the temperature range 150–200°C. For undoped spray pyrolyzed films, the resistivity was observed to be in the range 1.2 × 10−1 to 1.69 × 10−2 ω-cm in the temperature range 250–370° C. Hall effect measurements indicated that the mobility as well as carrier concentration of evaporated films were greater than that of spray deposited films. The lowest resistivity for antimony doped tin oxide film was found to be 7.74 × 10−4 ω-cm, which was deposited at 350°C with 0.26 g of SbCl3 and 4 g of SnCl4 (SbCl3/SnCl4 = 0.065). Evaporated films were found to be amorphous in the temperature range up to 200°C, whereas spray pyrolyzed films prepared at substrate temperature of 300– 370°C were poly crystalline. The morphology of tin oxide films was studied using SEM.  相似文献   

19.
The amorphous hydrous ruthenium oxide (RuO2·nH2O) thin films were deposited by a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method. These films were characterized for their structural, surface morphological, and compositional study by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDAX) techniques. The wettability test was carried out by measuring the water contact angle. The scanning electron microscopy study showed small RuO2 particles are grouped together to form porous agglomerates. The FT-IR study confirmed the formation of hydrous ruthenium oxide films. The hydrophilic nature of ruthenium oxide (RuO2·nH2O) thin films was observed from water contact angle measurement. The presence of Ru and O in the film was confirmed by EDAX analysis. The supercapacitor behavior of these films studied in 0.5 M H2SO4 electrolyte showed maximum specific capacitance of 162 F g−1 at 10 mV s−1 scan rate. These films exhibit 80% cycling performance after 2,000 cycles. The charge–discharge studies carried at 1 mA cm−2 current density revealed the specific power of 3.5 KW kg−1 and specific energy of 29.7 W Kg−1 with 93% coulombic efficiency.  相似文献   

20.
LiNi0.9Co0.1O2 cathode material is prepared from LiOH·H2O and Ni0.9Co0.1(OH)2 by co-precipitation and subsequent two-stage heat treatment in flowing oxygen based on the results of thermogravimetric. The structural and electrochemical properties of the samples are characterized by means of inductively coupled plasma-atomic emission spectrometer (ICP-AES), X-ray diffraction (XRD), scanning electron microscope (SEM), cyclic voltammogram (CV) and charge–discharge studies. All the samples sintered at different temperatures have a typical layered structure with space group R3-m and good electrochemical performances. The sintering temperature has a remarkable effect on the electrochemical performance of the samples. The sample sintered at 730 °C shows the largest initial discharge capacity 191.1 mAh g−1 (50 mA g−1, 3.0–4.3 V) and the best cycling performance. The initial discharge capacity rises to above 200 mAh g−1 with the voltage range 3.0–4.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号