共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
高精度太阳能跟踪控制器 总被引:1,自引:0,他引:1
针对目前采用的传统太阳能跟踪控制器传感器形式单一、抗干扰性差、跟踪精度不高等问题,设计了一种基于可编程逻辑控制器(Programmable Logic Controller,PLC)的太阳能跟踪控制器系统。该系统将固定轨迹粗略跟踪方式与光电传感器精确跟踪方式有效地结合起来,并重点将光电传感器加以改进,从而有效地提高了太阳能利用率。由伺服电机作为执行机构控制太阳能板对太阳位置的跟踪,可以实现对太阳高度角和方位角的双自由度跟踪,使太阳能跟踪装置始终正对着太阳光线位置。通过对比实验表明,该跟踪控制器可以达到较高的跟踪精度。 相似文献
5.
6.
7.
8.
提出了基于可编程逻辑控制器PLC(Programmable Logic Controller)的太阳能跟踪系统,使太阳能模块能实时跟踪太阳光照,将太阳能利用到最大限度。系统包括硬件和软件两部分,硬件有PLC输入输出端口,信号处理模块,光敏电阻光强法比较电路以及开关电源的设计,软件包括PLC控制程序和监控程序。基于PLC的太阳能跟踪系统可以独立应用于太阳能发电设备,也可以应用于串并联的大型光伏发电系统现场的总线控制,具有非常广阔的前景。 相似文献
9.
太阳能跟踪控制系统是光伏发电实训系统的重要组成部分,阐述了全太阳能跟踪控制系统的组成,以西门子S7-200PLC为核心配置了系统,以STEP 7 MicroWin为开发环境完成了光伏系统中的"逐日"用户程序的开发,并配有监控界面。结果表明,该系统能够实现光伏发电实训系统中太阳能的采集,提高太阳能发电系统的效率。 相似文献
10.
11.
12.
A thermal model for concentrator solar cells based on energy conservation principles was designed.Under 400X concentration with no cooling aid,the cell temperature would get up to about 1200℃.Metal plates were used as heat sinks for cooling the system,which remarkably reduce the cell temperature.For a fixed concentration ratio,the cell temperature reduced as the heat sink area increased.In order to keep the cell at a constant temperature,the heat sink area needs to increase linearly as a function of the concentration ratio.GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model.A cell temperature of 37℃ was measured when using a heat sink at 400X concentratration. 相似文献
13.
单体聚光太阳电池的热分析和温度测试 总被引:1,自引:0,他引:1
A thermal model for concentrator solar cells based on energy conservation principles was designed. Under 400X concentration with no cooling aid, the cell temperature would get up to about 1200 ?C. Metal plates were used as heat sinks for cooling the system, which remarkably reduce the cell temperature. For a fixed concentration ratio, the cell temperature reduced as the heat sink area increased. In order to keep the cell at a constant temperature, the heat sink area needs to increase linearly as a function of the concentration ratio. GaInP/GaAs/Ge triple-junction solar cells were fabricated to verify the model. A cell temperature of 37 ?C was measured when using a heat sink at 400X concentration. 相似文献
14.
空间激光通信终端伺服系统是一种高精度的跟踪机构,在扰动条件下,通信系统对跟踪系统的稳定性及精度提出了较高的要求。本文主要介绍了激光通信伺服系统的复合跟踪技术,详细论述了单探测器复合跟踪方式的选择以及激光通信伺服系统的控制流程。最后,在振动平台上进行了粗精复合的激光跟踪实验。实验结果显示,当通信终端系统跟踪最大振动加速度为0.22°/s2的振动平台时,跟踪目标平稳性较好,单独采用粗跟踪时误差为60 μrad,采用粗精复合跟踪时位置误差可以达到2 μrad。实验结果表明,空间激光通信系统中单探测器复合跟踪技术的设计满足了系统跟踪精度的要求,为激光通信控制系统的设计提供了一定的参考。 相似文献
15.
Ignacio Rey‐Stolle Carlos Algora 《Progress in Photovoltaics: Research and Applications》2003,11(4):249-254
The present work summarises the results of an experiment of light‐soaking high‐concentrator MOVPE‐grown GaAs solar cells under monochromatic light (808 nm). The irradiance level was set so that the short‐circuit current obtained was 1100 times that produced with the AM1ċ5D spectrum at 1 kW/m2. This test caused no morphological changes in the devices. The main phenomenon discovered has been a slight increase with time of the reverse current I02. This increase is analogous to that observed in similar degradation experiments based on high forward currents. In general, the results of these tests show that the drop in performance is very limited, supporting the idea that concentrator GaAs solar cells are rugged devices, capable of achieving long lifetimes in field operation. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
16.
Alberto Jimnez‐Solano Jos‐Maria Delgado‐Snchez Mauricio E. Calvo Jos M. Miranda‐Muoz Gabriel Lozano Diego Sancho Emilio Snchez‐Cortezn Hernn Míguez 《Progress in Photovoltaics: Research and Applications》2015,23(12):1785-1792
Herein, we present a prototype of a photovoltaic module that combines a luminescent solar concentrator integrating one‐dimensional photonic crystals and in‐plane CuInGaSe2 (CIGS) solar cells. Highly uniform and wide‐area nanostructured multilayers with photonic crystal properties were deposited by a cost‐efficient and scalable liquid processing amenable to large‐scale fabrication. Their role is to both maximize light absorption in the targeted spectral range, determined by the fluorophore employed, and minimize losses caused by emission at angles within the escape cone of the planar concentrator. From a structural perspective, the porous nature of the layers facilitates the integration with the thermoplastic polymers typically used to encapsulate and seal these modules. Judicious design of the module geometry, as well as of the optical properties of the dielectric mirrors employed, allows optimizing light guiding and hence photovoltaic performance while preserving a great deal of transparency. Optimized in‐plane designs like the one herein proposed are of relevance for building integrated photovoltaics, as ease of fabrication, long‐term stability and improved performance are simultaneously achieved. © 2015 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd. 相似文献
17.
The optimizations of the emitter region and the metal grid of a concentrator silicon solar cell are illustrated. The optimizations are done under 1 sun,100 suns and 200 suns using the 2D numerical simulation tool TCAD software.The optimum finger spacing and its range decrease with the increase in sheet resistance and concentration ratio.The processes of the diffusion and oxidization in the manufacture flow of the silicon solar cells were simulated to get a series of typical emitter dopant profiles to optimize.The efficiency of the solar cell under 100 suns and 200 suns increased with the decrease in diffusion temperature and the increase in oxidation temperature and time when the diffusion temperature is lower than or equal to 865℃.The effect of sheet resistance of the emitter on series resistance and the conversion efficiency of the solar cell under concentration was discussed. 相似文献
18.
Kenji Araki Hisafumi Uozumi Toshio Egami Masao Hiramatsu Yoshinori Miyazaki Yoshishige Kemmoku Atsushi Akisawa N. J. Ekins‐Daukes H. S. Lee Masafumi Yamaguchi 《Progress in Photovoltaics: Research and Applications》2005,13(6):513-527
The status of the development of a new concentrator module in Japan is discussed based on three arguments, performance, reliability and cost. We have achieved a 26·6% peak uncorrected efficiency from a 7056 cm2 400 × module with 36 solar cells connected in series, measured in house. The peak uncorrected efficiencies of the same type of the module with 6 solar cells connected in series and 1176 cm2 area measured by Fraunhofer ISE and NREL are reported as 27·4% and 24·8% respectively. The peak uncorrected efficiency for a 550× and 5445 cm2 module with 20 solar cells connected in series was 28·9% in house. The temperature‐corrected efficiency of the 550 × module under optimal solar irradiation condition was 31·5 ± 1·7%. In terms of performance, the annual power generation is discussed based on a side‐by‐side evaluation against a 14% commercial multicrystalline silicon module. For reliability, some new degradation modes inherent to high concentration III‐V solar cell system are discussed and a 20‐year lifetime under concentrated flux exposure proven. The fail‐safe issues concerning the concentrated sunlight are also discussed. Moreover, the overall scenario for the reduction of material cost is discussed. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
19.
Avi Braun Baruch Hirsch Alexis Vossier Eugene A. Katz Jeffrey M. Gordon 《Progress in Photovoltaics: Research and Applications》2013,21(2):202-208
We report experimental results for the effect of irradiance (from 12 up to 8600 suns) on the temperature coefficients of the key performance parameters of multijunction concentrator solar cells, with a flash‐like, real‐sun optical system. Particular attention is paid to the time scales and magnitudes of junction heating, hence the degree to which the cell can be deemed isothermal. The implications for corresponding measurements from solar simulators with pulsed artificial light and for the performance evaluation of concentrator photovoltaics are also addressed. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
20.
为了解决太阳能工程项目中光伏效率不高的问题,设计了双轴太阳能跟踪装置,该系统采用视日轨迹跟踪方案。文中着重分析了双轴跟踪的原理及其系统组成,利用光伏元件和STC89C52单片机实现大范围太阳跟踪,液晶显示屏实时显示最佳接收方位角及温湿度。在光线充足的天气条件下,跟踪装置自动旋转并始终保持太阳光垂直照射在太阳能电池的表面。在阴雨天或夜间等光线不足的条件下系统停止跟踪太阳转动。整个系统不需要任何外部电源供电,实现对太阳的高精度跟踪,并且使系统具有较强的抗干扰和运算能力。 相似文献