首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以小于20目的玉米芯为原料,以水蒸气为活化剂,在N2保护下,采用物理活化法制备多孔炭,考察了炭化温度、炭化时间、操作方式以及活化时间等操作条件对多孔炭收率、比表面积和孔结构参数等的影响。同时采用N2吸附法,对多孔炭的比表面积及孔结构进行了表征。实验结果表明:经过800□炭化30min,并采用恒温时加料,恒温时取出的操作方式,是制备较高比表面积多孔炭的最佳炭化条件:在同一活化温度下,为得到收率较高的产品,不易延长其活化时间;经过对原料进行酸处理和热压成型,可以提高多孔炭的收率,增加多孔炭的比表面积和总孔容。  相似文献   

2.
能源消费增加促使绿色能源开发成为趋势,同时推动能源存储系统快速发展,超级电容器以高功率密度和长循环寿命的优势得到广泛关注,其中电容炭材料逐渐成为研究热点。用来源广泛、有可再生性、价格低廉、绿色环保的生物质制备超级电容器用多孔炭材料,在开发绿色能源的同时解决了能源存储问题。多孔炭材料结构调控与性能完善是提高超级电容器性能的重要途径之一。综述了生物质衍生多孔炭材料及其在超级电容器领域的应用,按原料来源(植物、动物和微生物)及材料维度(0D、1D、2D和3D)的分类体系,多孔炭材料制备方法及技术现状。将多孔炭的制备分为炭化和活化,简述了炭化与活化机理、活化方式选择和常见活化剂特性,但生物质衍生多孔炭材料制备过程中影响因素多,且性能不及传统煤基碳材料,需进行多方面设计优化,包括选择生物质前驱体、合理使用炭化技术、调控活化过程各影响因素和选择改性过程中掺杂物等。基于在超级电容器领域的应用需求,重点探讨生物质多孔炭材料优化方式,包括孔结构调控、表面元素掺杂及与石墨烯复合形成新型炭材料等。梳理多孔炭材料用于超级电容器中时的难题与重点,通过寻找多孔炭材料在高比表面积、均匀孔隙分布和高导电性3方面的最优...  相似文献   

3.
以酚醛树脂为炭前驱体、聚乙烯醇缩丁醛(PVB)为造孔剂,采用聚合物共混炭化法制备了多孔炭材料,考察了造孔剂PVB的含量、炭化温度和炭化时间对多孔炭材料比表面积和孔结构的影响.结果表明,在造孔剂PVB的含量为40%、炭化温度为700℃、炭化时间为1.0 h的条件下,可制得BET比表面积为540.4 m2·g-1、孔容为0.37 cm3·g-1、平均孔径为7.298 nm的多孔炭.  相似文献   

4.
以酚醛树脂为前驱体,纳米SiO2为模板剂,采用模板炭化和钾碱活化工艺研制中孔率较高、比表面积较大的中孔炭(Mesoporous carbon,MC),考察了活化温度、活化时间、树脂模板比等工艺参数对活性炭孔结构的影响。测试了活性炭N2的吸附等温线、孔径分布、比表面积,并通过扫描电子显微镜观察其微观结构。结果表明,较优工艺条件为:树脂模板比为2:1、活化温度850℃、活化时间3h,该条件下所得中孔炭中孔率达91.4%,比表面积为1501m^2·g^-1,总孔孔容1.38m^2·g^-1,为理想的窄孔径分布活性炭。  相似文献   

5.
随着多孔炭材料应用领域的拓宽,对其性能要求也不断提高.综述了国内外的进展,阐述了如何从原料及活化工艺出发提高多孔炭的中孔含量,重点放在原料改性及活性炭纤维的制备.  相似文献   

6.
工艺参数对天然沸石模板多孔炭结构的影响   总被引:1,自引:0,他引:1  
以内蒙古赤峰市的天然沸石矿为模板,以蔗糖为炭的前驱体,制备了具有较窄中孔孔径分布的模板多孔炭。利用SEM、XRD及N2吸附等方法对模板炭进行了表征。采用BJH法分析了模板炭的孔径分布特征。研究了制备工艺中催化剂H2SO4的用量和炭化温度对所得模板多孔炭结构的影响。结果表明,硫酸用置和炭化温度对模板多孔炭的表面形貌、微晶结构和孔结构都有一定的影响。催化剂H2SO4用置过多时模板炭表面结构粗糙、致密,杂质较多,比表面积和总孔容较小;炭化温度越高,模板炭的结构收缩越严重,总孔容和中孔孔容越大,中孔率越高。  相似文献   

7.
KOH活化与CO2活化的ACF的孔结构   总被引:7,自引:1,他引:7  
以KOH和CO2为活化剂分别制备了粘胶基活性炭纤维,并用77K氮吸附进行了孔结构表征。结果表明:两种活化方法制备的样品都是以微孔为主的多孔材料,但孔径分布有所不同,KOH活化的样品具有更窄的孔径分布。  相似文献   

8.
以废弃榛壳为前体,采用不同活化策略制备多孔炭,探究活化策略和活化温度对多孔炭挥发性有机化合物(VOCs)吸附性能的影响,以及多孔炭的结构、表面性质与VOCs吸附性能的构效关系。结果表明,H3PO4法制备的多孔炭介孔体积大,且炭结构缺陷较少,吸附位点较少; KOH法获得的微孔体积较大,孔径集中在0.5~0.7nm的微孔,不利于VOCs分子吸附位点的有效利用。H3PO4-KOH分步法在850℃下制备具有高比表面积,孔径集中在0.5~1nm的宽微介孔分布,且炭结构高度无序并含有丰富缺陷位的多孔炭,为VOCs吸附提供了充足的吸附位点并提高了吸附位点了利用率,相比于H3PO4与KOH活化法制备的多孔炭的VOCs饱和吸附量显著提升,特别是对于弱极性VOCs。另外,H3PO4-KOH分步法制备的多孔炭表面官能团含量较低,极性较低,对非极性VOCs的吸附量远大于极性VOCs。因此,H3PO4-KOH分步活化策略是制备具有高比表面积、高VOCs吸附性能多孔炭的最优策略与方案。  相似文献   

9.
PF与PVB共混炭化制备双电层电容器用多孔炭材料的研究   总被引:8,自引:0,他引:8  
以酚醛树脂(PF)为原料,聚乙烯醇缩丁醛(PVB)为成孔剂,采用聚合物共混炭化法制备双电层电容器用多孔炭材料。通过热重(TG)和差热(DTA)分析,初步探讨了单一PF、PVB和PF、与PVB的共混物在炭化过程中的热解行为。考察了炭化温度和PF/PVB质量比对所得多孔炭的收率、BET比表面积、孔径分布和比电容的影响,并进一步探讨了以这种多孔炭材料作电极的模拟双电层电容器的充放电特性。结果表明,共混聚合物中PF与PVB是不相容的,热解过程各自独立进行,但存在一定的协同作用。随着炭化温度的升高,所得多孔炭的收率下降,比表面积、总孔容积和比电容先增大后减小,在800℃时达到最大值。随着PF/PVB质量比的增加,所得多孔炭的收率增加,比表面积和总孔容减小,比电容也减小。聚合物的混合方式及状态也是影响多孔炭性能的因素之一。以比电容为26.3F/g的多孔炭作电极的模拟双电层电容器具有良好的充放电性能。  相似文献   

10.
以天然木质材料为原料,以ZnCl2为活化剂,采用一步化学活化法制备了保留木材天然结构的生物形态多孔炭。研究了活化工艺参数对多孔炭的孔结构和表面形貌的影响,并初步探讨了活化机理。结果表明:活化剂ZnCl2对于生物形态多孔炭具有很好的活化作用,通过改变ZnCl2/多孔炭的浸渍比、活化温度,可以调控多孔炭的孔结构和表面形貌。活化温度450℃,浸渍比为7时,多孔炭的BET比表面积为771.6m2/g;浸渍比为5,活化温度900℃,多孔炭的BET比表面积为951.34m2/g。ZnCl2具有催化脱羟基和脱水的作用,并促进芳烃缩合反应,对多孔炭表面产生造孔和扩孔作用,随着浸渍比的提高和活化温度的升高,扩孔作用明显。  相似文献   

11.
以石油焦为原料,氢氧化钾为活化剂,采用化学活化法制得中孔丰富、比表面积高的多孔炭。通过硝酸铁溶液浸渍,再经高温热处理,或在高温过程中通入CO2,对多孔炭进行孔结构深度调控。将所制多孔炭用作电化学电容器电极材料,通过恒流充放电、循环伏安测试其电化学性能,采用氮气吸附法测定多孔炭的比表面积及孔径分布。结果表明:KOH与石油焦质量比为3∶1,活化温度850℃,活化时间90 min时,可以制得比表面积为2 738 m2/g,总孔容为1.51 cm3/g,中孔率为43.2%的多孔炭,在电流密度为100 mA/g时,该电极在6 mol/L KOH电解液中的比电容值高达256.6 F/g。多孔炭经金属盐溶液浸渍并经CO2二次活化后,中孔率由43.2%提高至70.7%,尽管因比表面积的下降造成了电极比电容值的下降,但由于中孔率的提高,电极的充放电速率明显加快。  相似文献   

12.
叙述了以偏氯乙烯聚合物为碳源,通过高温直接炭化制备微孔为主的多孔炭,及炭化、催化活化和模板法制备中孔-微孔复合多孔炭的研究进展,归纳了影响2种新型多孔炭制备过程中炭材料孔隙的主要因素.介绍了偏氯乙烯聚合物基微孔和中孔-微孔复合多孔炭材料在超级电容器电极、催化剂负载和吸附分离等方面的应用.认为偏氯乙烯聚合物基多孔炭属新型...  相似文献   

13.
探讨了制备了工艺条件对炭膜支撑孔结构性能的影响,研究表明,提高成型压力可使支撑体的平均孔径减小,提高炭化纤维速率则使支撑体的平均孔径增大;随着炭化终温的升高,支撑体的平均孔径出现极大值。  相似文献   

14.
以秸秆为原料,微波干燥后经炭化、活化处理制备出一种新型多孔材料。以响应面法对多孔材料的制备工艺进行优化,并用扫描电镜、N_2-物理吸附(BET)分析和X射线衍射(XRD)等分析手段对产物的结构和性质进行了表征。结果表明,该多孔材料的最佳制备条件为活化反应温度707.40℃、炭化样品与KOH质量比1:3、活化反应时间17.20 min,在此条件下制备的材料具有较好的多孔性和较大比表面积,孔径集中在5.6~13 nm,比表面积达1 463.15 m~2/g,是孔径较大的介孔材料。  相似文献   

15.
多孔炭的表面性质、孔径分布及比表面积是影响其电化学性能的主要因素。为了对多孔炭孔结构及电化学性能等进行调控,采用聚乙烯吡咯烷酮为碳源、纤维水镁石为模板、磷酸三钾为活化剂,通过一步炭化–活化法制备了分级多孔炭(HPC),并研究了磷酸三钾添加量对多孔炭孔径分布、比表面积及电化学性能的影响。基于X射线衍射、氮气吸脱附、扫描电镜、X射线光电子能谱、X射线能谱仪、横流充放电、循环伏安及交流阻抗等测试,结果表明:磷酸三钾活化后样品HPC/K3在0.5 A/g电流密度下比电容可达281.94 F/g,远高于未活化HPC/K0的200.31 F/g;经过8 000次充放电循环后容量保持率可达84.7%。研究表明磷酸三钾活化可以显著改善多孔炭的电化学性能,此外,以纤维水镁石为模板合成多孔炭,还可以为天然矿物纤维水镁石的高附加值应用提供新思路。  相似文献   

16.
炭—石墨材料的孔结构:—孔结构描述及其对性能的影响   总被引:4,自引:0,他引:4  
炭-石墨材料的性能决定于其结构,而孔结构是炭-石墨材料结构的重要方面。本文较系统地讨论了炭-石墨材料中的孔结构及孔的分类,同时讨论了用以定量描述炭-石墨材料孔结构特征的参量,包括气孔率、孔径分布、比表面、形状因子及孔表面分维。在此基础上,阐述了炭—石墨材料中气孔对其物理、化学性能产生影响的机理,并在实验的基础上,讨论了炭—石墨材料的力学、热学、电学及化学性能与孔结构参数的相关性。  相似文献   

17.
以商业活性炭为原料,采用水蒸气和KOH为活化剂,在不同活化条件下制备二次活化样品。用DFT方程考察活性炭孔径的变化;用FT-IR技术对活性炭表面官能团进行分析表征;采用XRD技术测试活性炭中的乱层结构。结果表明:无论何种活化方式,延长活化时间和提高活化温度,均有利于制备高比表面积且孔径发达的活性炭;化学二次活化较物理活化更易制得高比表面积且孔径发达的活性炭,且两种活化方式制备的活性炭的孔结构存在明显的差异;在适宜的条件下,KOH二次活化制备的活性炭在孔径<4.00 nm的范围内孔结构发达,孔径在4.00 nm~8.00 nm出现明显的分布峰,且石墨化结构破坏严重。  相似文献   

18.
炭材料中孔控制技术   总被引:6,自引:2,他引:4  
李护彬 《炭素》2002,(4):30-38,25
综合评述了国内外炭材料中孔控制方面的发展情况,总结提出了炭材料的几种中孔控制技术,经活化法,共混聚合物碳化法,有机凝胶碳化法和模板碳化法。  相似文献   

19.
以微孔炭、介孔炭及大孔炭为代表的多孔炭材料,因其三维多孔结构和良好的热稳定性而具有优异的吸附性能,其主要制备方法有活化法、软硬模板法等。在介绍了三种多孔炭材料制备方法与特点的基础上,综述了多孔炭材料作为吸附剂在重金属离子废水、染料废水和其他废水处理中的应用研究进展。  相似文献   

20.
多孔炭球是应用在有害气体吸附、超级电容器及血液渗透等领域中的关键材料,其孔结构及性能由原料种类及制备工艺等共同决定。以磺化苯乙烯-二乙烯基苯阳离子交换树脂为原料通过化学气相沉积法(CVD)制备多孔炭球,通过扫描电镜及比表面积分析研究了不同热处理条件对所制炭球孔结构的影响。实验表明:烧结工艺对多孔炭球的形貌及结构有很大影响。具体来说,炭化温度的提高整体上有利于孔结构的形成;升温速率提高有利于介孔、大孔结构的形成;活化有利于形成微孔结构。以上研究对炭球孔结构的可控制备有一定意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号