首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正> 最近,美国GTE(通用电话电气)产品公司的化学与冶金分部,正在采用等离子熔炼—快速凝固(PMRS)技术,生产颗粒细小的球形重钨合金粉末。该公司采用这项技术用于研究难熔金属合金粉末。但重点是93W-4.9Ni-2.1Fe合金。迄今为止,这种重钨合金粉末一直是通过干混钨、镍、铁元素粉末生产的。但是,这种干混的合金粉末,常会出现偏析、聚集体组份不均匀及在运输过程中发生沉淀等现象。等离  相似文献   

2.
TiNi合金粉末烧结与燃烧合成工艺   总被引:1,自引:0,他引:1  
评述了目前用于制造TiNi合金的粉末冶金方法,包括粉末烧结和燃烧合成。近净成形粉末烧结可以保证成分均匀,晶粒细小。但是生产周期长,材料的纯度低。燃烧合成技术(SHS)是一种特殊的粉末冶金技术,兼有烧结与熔炼方法的优点,有望成为TiNi合金生产的主要手段。  相似文献   

3.
本文研制了一种低氧含量NiCr合金粉末。首先在熔炼过程中向合金液中加入一种自行研制的添加剂A,这种添加剂含有易氧化元素。然后通过气体雾化技术获得了NiCr合金粉末,最后对所得合金粉末进行表面处理。实验结果发现,通过这种工艺能够大幅度降低NiCr合金粉末的氧含量,其氧含量能到达0.05%左右。  相似文献   

4.
本文介绍了Fe基、Ni基、Co基等雾化合金粉末的形状,以及熔炼过程中元素的损耗情况,并对此现象做了简述.  相似文献   

5.
本文综述用于车轴表面强化与修复的合金粉末制备方法及采用不同热喷焊技术进行车轴表面强化与修复。通过研究多元复合改性、复合材料的清洁熔炼和拉瓦尔喷嘴超音速雾化粉末制备技术,得到满足车轴基体材料表面强化和修复技术要求的合金粉末。  相似文献   

6.
球形粉末是增材制造、粉末冶金、注射成型等制备工艺的重要原料,其成分、粒度、球形度、空心粉率等是影响最终构件性能的关键因素。本文详细介绍了真空感应熔炼气雾化法、电极感应熔炼气雾化法以及等离子旋转电极雾化法等三种可用于增材制造的工程化高温合金球形粉末的制备技术,分析了这三种制粉工艺的特点,阐述了这三种制粉工艺的研发进展,探讨了三种制粉工艺所制备的粉末缺陷形成原因及控制方法,并提出了增材制造用高温合金粉末制备技术的发展趋势。  相似文献   

7.
<正>美国麻省理工大学(MIT)的研究人员开发出一种新型钨铬铁粉末冶金合金W-7Cr一9Fe,可以取代穿甲弹中的贫铀合金。测试结果表明,W-7Cr-9Fe合金纳米压痕硬度高达21吉帕,约是纳米晶体铁基合金或粗晶钨的2倍,远高于目前的商用钨合金。这种合金的制备过程是:首先制备纳米晶体粉末,再制成所需形状。其中,粉末是采用高能球磨粉末冶金工艺制备的,包括反复的剪切促使合金粉末混合,同时伴随热激活恢复过程,使合金恢复到平衡状态。  相似文献   

8.
Cu-Cr合金触头材料制备技术的研究   总被引:1,自引:0,他引:1  
综合述评了Cu-Cr合金的两种传统制备方法,如粉末烧结法、熔渗法和电弧熔炼法,以及制备新技术真空感应熔炼法、自蔓延熔铸法、机械合金化法等工艺方法,分析了它们的优缺点及研究现状,并指出了Cu—Cr合金的发展趋势。  相似文献   

9.
Fe-Si机械合金化过程的研究   总被引:2,自引:0,他引:2  
采用高能行星球磨的方法研究了原子配比3:1的Fe、Si混合粉末的机械合金化过程。用XRD、TEM、SEM及EPMA对球磨不同时间粉末的结构、组织、形貌、截面进行了分析。结果表明:Fe75Si25混合粉末在球磨的过程中出现两种形态变化,一种是Fe与Si形成层状形态,另一种为Si及Fe—Si合金包覆Fe形成包覆形态;球磨至30h,合金化基本完成;球磨产物为α—Fe(Si)固溶体,颗粒粒径约为1~20μm。利用一个简单的模型来对Fe75Si25混合粉末合金化过程进行了描述。  相似文献   

10.
采用真空电孤炉熔炼制备Fe50Al50合金,Fe50Al50合金的穆斯堡尔谱线为单峰,这说明完全有序B2-FeAl合金是无磁性的。将有序B2-FeAl合金进行球磨100、120h后,再测量该粉末的穆斯堡尔谱,得到的是展宽的多峰谱线。这表明,球磨后合金样品发生了有序-无序转变,可以通过无序化来提高FeAl合金的磁矩。  相似文献   

11.
本文以低成本Fe V80中间合金粉末为原料,用粉末冶金法制备了Ti185合金,并对其组织和力学性能进行分析检测。实验结果表明,该方法制备出的烧结合金组织均匀,无元素偏析,未产生传统熔炼方法中不可避免的"β斑";其抗拉强度可达到840±20 MPa、屈服强度可达到772±15 MPa、延伸率为5.4±0.3%,综合性能可与市售Ti185合金坯料媲美。  相似文献   

12.
采用高能球磨和放电等离子体烧结技术制备W-4.9Ni-2.1Fe高比重合金,研究不同球磨时间对合金显微组织结构和摩擦磨损行为的影响. 结果表明:当球磨时间较短(2 h)时,合金粉末中Ni、Fe元素仍以单质的形式存在;随着球磨时间的延长,Ni(Fe)溶入W晶格中形成W的过饱和固溶体,W衍射峰强度逐渐变弱,峰形明显宽化,合金试样的相对密度呈下降趋势;适量的球磨时间(24 h),既可以保证合金中黏结相的含量和均匀分布,又不至于引入过量的杂质元素而引起合金成分改变,合金拥有最优的耐摩擦磨损性能.   相似文献   

13.
以Zr-Sn—Fe—Cr—Ni合金为研究对象,通过2次非自耗真空电弧熔炼制备出中间合金,对熔炼中间合金时所采用的坩埚的冷却系统进行了改造,对比了改造前后中间合金的熔炼过程,并采用OM、EDS研究了中间合金的组织及化学成分,冉以添加中间合金扣方式压制电极,利用真空自耗电极熔炼方式制备出吨级锆合金铸锭,并对成品铸锭的成分进行跟踪。结果表明:在坩埚中加入导流槽后,中间合金的熔炼效率得到了提高,熔炼时难脱模现象大大缓解;采用加导流槽后的坩埚经过2次熔炼可以制备出成分均匀的中间合金,合金组织由柱状品和树枝晶组成,与未加导流槽时所熔炼的合金相比,组织及成分更加均匀;采用冷却系统改造后的坩埚熔炼的中间合金可以制备出成分均匀的工业规模级锆合会铸绽。  相似文献   

14.
通过高能球磨法制备Fe75Si25纳米晶合金粉末,研究了高能球磨下的反应进程及产物,并讨论了合金粉末的微观结构和磁性能。结果表明:对于Fe75Si25粉末,合金化得到的是bee晶体结构的α-Fe(Si)固溶体。球磨84h以后,晶粒度达到了18nm,并且合金化程度较高。合金粉末具有良好的软磁性能,粉末的磁导率和比磁化强度,随着球磨时间的增加呈先减小后增大的趋势。热处理温度对粉末磁性能有着较大的影响,在380℃左右合金粉末的磁性能最好。  相似文献   

15.
GH3536是一种应用广泛的Fe基变形高温合金.通过采用真空感应熔炼(VIM)制备不同Si含量的GH3536母合金,采用等离子旋转电极法(PERP)制备GH3536合金粉体,采用选区激光熔化方法(SLM)制备了不同Si含量3D打印GH3536合金样品,利用光学显微镜(OM)和扫描电镜(SEM)研究样品的微观组织,发现高...  相似文献   

16.
采用正交试验法,利用硼氢化钠水溶液还原氯化亚铁和氟硅酸钠水溶液中的Fe和Si,制备出一种粒径为200~500 nm的球形粉末,采用X射线衍射仪、同步热分析仪、透射电子显微镜及选区电子衍射、X射线光电子能谱仪以及电感耦合等离子体光谱分析表明该粉末是成分为Fe87.6Si1.08B11.31的非晶态合金。利用矢量网络分析仪研究了该粉末的吸波性能,结果表明:该粉末在14.56 GHz处最小反射损耗为—44.8 dB,对应的匹配厚度为1.5 mm,有效带宽为6.16 GHz且为最大吸收带宽。对电磁波的损耗以磁损耗为主,介电损耗为辅,其中介电损耗以偶极极化为主,磁损耗以涡流损耗和自然共振为主。  相似文献   

17.
采用火花等离子体放电法制备了高温合金粉末。通过扫描电子显微镜对在不同电介质和电流条件下制备的高温合金粉末的形貌、颗粒大小以及内部凝固组织进行了分析。结果表明,该方法制备的高温合金粉末的粒度细小、颗粒球形度高、粉末颗粒表面光滑、看不到枝晶,颗粒内部凝固组织随颗粒大小和制备工艺而异。该方法还具有冷速快且设备简单的优点。  相似文献   

18.
采用感应熔炼的方法研究了LaFe13-x-ySixCoy合金近平衡条件下的凝固行为.应用XRD和SEM扫描电镜分析了合金组织结构和相组成.结果表明:La(Fe,Co,Si)13相是包晶反应生成的.过冷度和添加Si、Co的含量对合金的凝固行为有很大影响;当过冷度△T≥40 K,x=1.5时合金凝固组织中出现La(Fe,Co,Si)13相.应用经典形核理论对此进行了解释.  相似文献   

19.
优质的矫形钛合金应具有低弹性模量、低缺口敏感性和良好的生物相容性,同时还要避免存在铝和钒,为此研制出一种新的β钛合金Ti—12Mo—6Zr—2Fe.由于钼和锆较钛高得多的熔点和密度,很难用传统的二次真空电弧熔炼方法熔炼出均匀的Ti—12Mo—6Zr—2Fe铸锭,因此制定了这种新合金的三次熔炼技术,即两次真空电弧熔炼加一次电子束熔炼或两次等离子电弧熔炼加一次真空电弧熔炼.新合金具有优异的  相似文献   

20.
郝斌 《钛工业进展》1995,12(5):24-25
日本钢管公司(NKK)根据美国普尔曼公司的专利,研制出相对密度达99.7%的高密度烧结钛合金.这种方法是将钛粉和合金元素粉末混合,加压成型,然后再进行烧结,生产出烧结钛合金产品.粉末烧结产品的性能和熔炼材料的性能相当;在成本上与熔炼材料相比,也有一定的竞争力.制造方法 将钛粉末(-150目)和合金元素粉末(-325目)均匀地混合后,单向加压成型(294~686MPa),然后,在烧结温  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号