首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg_(0.2)Zn_(0.8)O(MZO)/La_(0.67)Ca_(0.33)MnO(LCMO) heterostructure was deposited on p~+-Si substrates by sol-gel spin coating technique. The Ag/MZO/LCMO/p~+-Si devices exhibit a bipolar, reversible, and remarkable current-voltage characteristic at room temperature. An obvious multilevel resistive switching effect is observed in the devices. The dominant conduction mechanism of the devices is trap-controlled space charge limited current. The resistance ratio of high resistance state and low resistance state of the devices is about six orders of magnitude, and the degradation is invisible in the devices after 250 successive switching cycles. The present results suggest that the Ag/MZO/LCMO/p~+-Si devices may be a potential and multilevel candidate for nonvolatile memory application.  相似文献   

2.
The Ag/Mg0.2Zn0.8O/ZnMn2O4/p+-Si heterostructure devices were fabricated by sol-gel spin coating technique and the resistive switching behavior, conduction mechanism, endurance characteristic, and retention properties were investigated. A distinct bipolar resistive switching behavior of the devices was observed at room temperature. The resistance ratio R HRS/R LRS of high resistance state and low resistance state is as large as four orders of magnitude with a readout voltage of 2.0 V. The dominant conduction mechanism of the device is trap-controlled space charge limited current (SCLC). The devices exhibit good durability under 1×103 cycles and the degradation is invisible for more than 106 s.  相似文献   

3.
Amorphous La0.7Zn0.3MnO3 (LZMO) films were deposited on p+-Si substrates by sol-gel method at low temperature of 450 °C. The Ag/LZMO/p+-Si device exhibits invertible bipolar resistive switching and the R HRS/R LRS was about 104-106 at room temperature which can be kept over 103 switching cycles. Better endurance characteristics were observed in the Ag/LZMO/p+-Si device, the V Set and the V Reset almost remained after 103 endurance switching cycles. According to electrical analyses, the conductor mechanism was in low resistor state (LRS) governed by the filament conductor and in the high state (HRS) dominated by the traps-controlled space-charge-limited current (SCLC) conductor.  相似文献   

4.
ZnMn2O4 films for resistance random access memory (RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn2O4 films were investigated. The ZnMn2O4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching (BRS) behavior dominated by the space-charge-limited conduction (SCLC) mechanism in the high resistance state (HRS) and the filament conduction mechanism in the low resistance state (LRS), but the ZnMn2O4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel (P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn2O4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest R HRS/R LRS ratio of 104 and the lowest V ON and V OFF of 3.0 V have been observed in Ag/ZnMn2O4/Pt device. Though the Ag/ZnMn2O4/n-Si device also possesses the highest R HRS/R LRS ratio of 104, but the highest values of V ON,V OFF, R HRS and R LRS, as well as the poor endurance and retention characteristics.  相似文献   

5.
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) and Bi3.15Nd0.85Ti3O12 (BNT) thin films were fabricated on Pt/TiO2/SiO2/Si (100) substrates by a modified sol-gel technique. X-ray diffraction indicated that these films were of single phase with random polycrystalline orientations. The surface morphologies of the films were observed by scanning electron microscope, showing uniform, dense films with grain size of 50–100 nm. Well-saturated hysteresis loops of the films were obtained in metal-ferroelectric-metal type capacitors with Cu top electrodes at an applied voltage of 400 kV/cm, giving the remanent polarization (2P r) and coercive field (2E c) values of the films of 25.1 μC/cm2 and 203 kV/cm for BLT, and 44.2 μC/cm2 and 296 kV/cm for BNT, respectively. Moreover, these capacitors did not show fatigue behaviors after up to 1.75×1010 switching cycles at the test frequency of 1 MHz, suggesting a fatigue-free character. The influences of the La3+ and Nd3+ doping on the properties of the films were comparatively discussed. Supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB932305) and the Natural Science Foundation of Hubei Province, China (Grant No. 2004ABA082)  相似文献   

6.
The Sm3+-doped SrO-Al2O3-SiO2 (SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian (SrAl2Si2O8) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm3+-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4G5/26 H j/2 (j=5, 7, 9, 11) transitions of Sm3+, respectively. Besides, by increasing the crystallization temperature or the concentration of Sm3+, the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that the Sm3+-doped SAS glass-ceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.  相似文献   

7.
A novel fluorescent probe for H2PO4 - was designed and fabricated based on the carbon dots/Fe3+ composite. The carbon dots were synthesized by an established one-pot hydrothermal method and characterized by transmission electron microscope, X-ray diffractometer, UV-Vis absorption spectrometer and fluorescence spectrophotometer. The carbon dots/Fe3+ composite was obtained by aqueous mixing of carbon dots and FeCl3, and its fluorescence property was characterized by fluorescence spectrophotometer. The fluorescence of carbon dots was quenched by aqueous Fe3+ cations, resulting in the low fluorescence intensity of the carbon dots/Fe3+ composite. On the other hand, H2PO4 - reduced the concentration of Fe3+ by chemical reaction and enhanced the fluorescence of the carbon dots/Fe3+ composite. The Stern-Volmer equation was introduced to describe the relation between the relative fluorescence intensity of the carbon dots/Fe3+ composite and the concentration of H2PO4 -, and a fine linearity (R 2=0.997) was found in the range of H2PO4 - concentration of 0.4-12 mM.  相似文献   

8.
Fatigue-free Bi3.2La0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si (100) substrates using metalorganic solution deposition process. The orientation and formation of 5-layers thin films were studied under different processing conditions using XRD. Experimental results indicate that increase in annealing time at 700 °C after preannealing for 10 min at 400 °C can remarkably increase (200)-orientation of the films derived from the precursor solutions with two contents of citric acid. Meanwhile, high content of citric acid increases the film thickness and is conducive to the a-orientation of the films with the preannealing, and low concentration of the solution is conducive to the c-orientation of the films without the preannealing.  相似文献   

9.
Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed.  相似文献   

10.
To discuss the function of Eu and Dy and their interaction in Sr2MgSi2O7: Eu2+, Dy3+ long afterglow material, the Eu and Dy single doped and their co-doped Sr2MgSi2O7: Eu2+, Dy3+ were prepared. The samples were characterized by X-ray diffraction (XRD), decay curves, photoluminescence (PL), and thermoluminescence (TL). The results indicate that Sr2MgSi2O7: Eu has afterglow properties, and the doping of Eu ion in Sr2MgSi2O7: Eu2+, Dy3+ can lower the depth of traps. Eu ion can not only serve as luminescence center, but also produce traps in the matrix, meanwhile, it also exerts certain influences on the traps produced by Dy in Sr2MgSi2O7: Eu2+, Dy3+. The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2MgSi2O7 matrix.  相似文献   

11.
The Bi4Zr0.5Ti2.5O12 (BZT) thin films were fabricated on the LaNiO3 bottom electrode using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction, AFM and SEM. The results show that the films have a perovskite phase and dense microstructure. The 2Pr and 2Vc of the Pt/BZT/LaNiO3 capacitor are 28.2 μC/cm2 and 14.7 V respectively at an applied voltage of 25 V. After the switching of 1×1010 cycles, the Pr value decreases to 87% of its pre-fatigue values. The dielectric constant (ε) and the dissipation factor (tanδ) of the BZT thin films are about 204 and 0.029 at 1 kHz, respectively. The films show good insulating behavior according to the test of leakage current. The clockwise C-V hysteresis curve observed shows that the Pt/BZT/LaNiO3 structure has a memory effect because of the BZT film's ferroelectric polarization.  相似文献   

12.
Nano fluorescent powder of Y4Al2O9: Eu3+ was synthesized by sol-gel method. The XRD shows that the product prepared at 900°C is pure-phase Y4Al2O9: Eu3+. The Y4Al2O9 powder is nano-size crystal testified by BF and ED analysis of TEM. The grain diameter of Y4Al2O9 is in the range between 20 and 50nm, and its average is 30 nm. The luminescent spectra show that Eu3+ ious occupy two kinds of sites in Y4Al2O9 crystal lattice. One is in the strict inversion center, and the other is in off lying inversion center. When excited with UV light (λ=254nm), Y4Al2O9: Eu3+ exhibits an orange emission bond at λ=590 nm due to the5Do7F1 transition and a red emission band at λ=610 nm due to5Do7F2 transition. YUAN Xi-ming: Born in 1951 Funded by Key Scientific and Technological Project of Hubei Province (2001 AA102A03)  相似文献   

13.
The (001) oriented BiFeO3 thin film was deposited on the Nb: SrTiO3 substrate by radio frequency magnetron sputtering technology, and the bipolar resistive switching effect was observed in the BiFeO3/Nb: SrTiO3 heterostructure. The results showed that the ratio between the high resistance and low resistance was more than two orders at a reading pulse of -0.5 V and it exhibited excellent retention over 3600 s. The current density-voltage characteristic was dominated by the space-charge-limited conduction. The resistive switching effect of the structure was attributed to the trapping/detrapping of the charge carriers.  相似文献   

14.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

15.
Na2O-Al2O3-SiO2 glass-ceramics doped with Er3+ ions were synthesized by the conventional melt quenching technique at a low melting temperature. The samples were characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR scanning spectrophotometry, and fluorescence spectrometry. The results show that the main crystalline phase of glass-ceramics is nepheline.The best heat-treatment process is at 520 °C for 2 h. Because the up-conversion luminescence and near infrared luminescence properties of glass doped with Eu3+ are studied in detail.  相似文献   

16.
Vanadium trioxide (V2O3) was directly prepared by NaVO3 electrolysis in NaCl molten salts. Electrolysis products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The existing state and electrochemical behavior of NaVO3 were also studied. The results indicated that V2O3 can be obtained from NaVO3. VC and C were also formed at high cell voltage, high temperature, and long electrolysis time. During electrolysis, NaVO3 was dissociated to Na+ and VO3 ? in NaCl molten salt. NaVO3 was initially electro- reduced to V2O3 on cathode and Na2O was released simultaneously. Na2CO3 was formed due to the reaction between Na2O and CO2. The production of C was ascribed to the electro-reduction of CO3 2?. VC was produced due to the reaction between C and V2O3.  相似文献   

17.
A light-weight high-entropy alloy (LWHEA) Al20Be20Fe10Si15Ti35 has been developed to have unique mechanical properties and oxidation resistance. One major and two minor phases are observed in the as-cast microstructure. The density of the alloy is 3.91 g cm?3, and its hardness is HV 911, which is higher than quartz. The hardness and hardness to density ratio are the highest of all light-weight alloys reported before. In addition, it has excellent oxidation resistance at 700°C and 900°C, which far exceeds that of Ti-6Al-4V. Thus, the combination of properties is promising for high-temperature applications, which require light weight, wear-resistant and oxidation-resistant components.  相似文献   

18.
The microwave dielectric properties and microstructure of BaTi4.3ZnyO9.6+y +0.02 mol% SnO2+0.01 mol% MnCO3+x mol% Nb2O5(x=0-0.05, y=0-0.08) system ceramics were studied as a function of the amount of ZnO and Nb2O5 doped. Addition of (y=0-0.05) ZnO and (x=0-0.025) Nb2O5 enhanced the reactivity and decreased the sintering temperature effectively. It also increased the dielectric constant ε r and quality factor Q(=1/tan 8) of the system due to the substitution of Ti^4+ ions with incorporating Zn^2+and Nb^5+ ions, which was analyzed by the reaction ZnO+Nb2O5+ 3 TiTxTi →ZnTi+ 2NbTi+3TiO2. When the system doped with (y=0.05) ZnO and (x=0.025) Nb205 were sintered at 1 160 ℃ for 6 h, the εr. Qf0 value and rfwere 36.5, 42 000 GHz, and+1.8 ppm/℃, respectively, at 5 GHz.  相似文献   

19.
Nano-spherical Co2+-doped FeS2 was synthesized through a simple solvothermal method. The products were investigated using XRD, FE-SEM, BET, ICP, EDS, TEM, HRTEM, XPS, and UV-vis spectroscopy. The results indicated that Co2+ ion could change the particle nucleation process and inhibited the particle growth of FeS2. In addition, when the content of doped Co2+ was 15%, the degradation efficiency of methylene blue (MB) achieved 60.72% after 210 min irradiation, which increased by 52.01% than that of the undoped FeS2. Moreover, comparison experiments also demonstrated that the M (M=Co2+, Co2+/Ni2+)-doped FeS2 photocatalytic activity efficiency sequence was Co2+ > Ni2+>Co2+/Ni2+. This is ascribed to the fact that the Co2+ doping could induce the absorption edge shifting into the visible-light region and increased the surface area of the samples. The effect mechanisms of M-doping on the band gap and the photocatalytic activity of FeS2 were also discussed.  相似文献   

20.
We have investigated the preparation and properties of Bi3.4Ce0.6Ti3O12 thin films. The Bi3.4Ce0.6Ti3O12 thin films were fabricated on the Pt/Ti/SiO2/Si substrates using sol-gel method. The structure and morphology of the films were characterized using X-ray diffraction and atomic force microscopy. The thin films showed a perovskite phase and dense microstructure. The dielectric constant and the dissipation factor of the Bi3.4Ce0.6Ti3O12 thin films were about 172 and 0.031 at 1 kHz, respectively. The 2P r and 2E c of the Bi3.4Ce0.6Ti3O12 thin films were 67.1 μC/cm2 and 299.7 kV/cm, respectively, under an applied field of 600 kV/cm. The Bi3.4Ce0.6Ti3O12 film did not show fatigue up to 4.46×109 switching cycles at a frequency of 1 MHz, and showed good insulating behavior according to the test of leakage current. Supported by the Natural Science Foundation of Hubei Province (Grants No. 2004ABA082)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号