首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We describe an apparatus that provides, for the first time, a seamless bridge between femtosecond and microsecond time-resolved Raman and infrared vibrational spectroscopy. The laser system comprises an actively Q-switched sub-nanosecond pulsed kilohertz laser electronically synchronized to an ultrafast titanium sapphire regenerative amplifier to within 0.2 ns. The ultrafast amplifier provides the stable probe light source enabling high-sensitivity infrared vibrational spectroscopy of transients. Time-resolved infrared spectra of the excited-state relaxation dynamics of metal carbonyl compounds are presented to illustrate the capability of the apparatus, and transient data is resolved from 1 picosecond to over 100 microseconds. The results are compared to conventional nanosecond Fourier transform infrared (FT-IR) and laser based flash photolysis time-resolved infrared technology.  相似文献   

2.
The design of a new high-pressure infrared (IR) cell for carrying out picosecond time-resolved infrared (ps-TRIR) spectroscopy in supercritical fluids is described. We have employed thin (2 mm) MgF(2) windows in order to overcome possible undesirable nonlinear optical effects caused by the extremely high peak powers of ultrashort ultraviolet (UV)/visible pulses. The design of our cell allows for the study of systems at pressures of up to 5500 psi at temperatures of up to approximately 50 degrees C. The MgF(2) windows enable the excitation of samples with both UV and visible light pulses and these windows are transparent across much of the mid-infrared region. We have demonstrated the use of this cell by examining the photochemistry of Fe(CO)(5) in supercritical Kr (sc Kr).  相似文献   

3.
ULTRA: A Unique Instrument for Time-Resolved Spectroscopy   总被引:2,自引:0,他引:2  
We report the development of a high-sensitivity time-resolved infrared and Raman spectrometer with exceptional experimental flexibility based on a 10-kHz synchronized dual-arm femtosecond and picosecond laser system. Ultrafast high-average-power titanium sapphire lasers and optical parametric amplifiers provide wavelength tuning from the ultraviolet (UV) to the mid-infrared region. Customized silicon, indium gallium arsenide, and mercury cadmium telluride linear array detectors are provided to monitor the probe laser intensity in the UV to mid-infrared wavelength range capable of measuring changes in sample absorbance of ΔOD ~ 10(-5) in 1 second. The system performance is demonstrated for the time-resolved infrared, two-dimensional (2D) infrared, and femtosecond stimulated Raman spectroscopy techniques with organometallic intermediates, organic excited states, and the dynamics of the tertiary structure of DNA.  相似文献   

4.
Strong K  Johnson TJ  Harris GW 《Applied optics》1997,36(33):8533-8540
A Fourier-transform spectrometer has been used in a step-scan mode to make time-resolved measurements of the evolving laser pulse in intracavity laser spectroscopy (ILS) experiments. Spectra of broadband dye laser pulses at approximately 615 nm were recorded at relatively high spectral (0.5-cm(-1)) and temporal (as high as 5-mus) resolution. In the absence of an absorber, the height of the pulse is shown to be proportional to t(g)(0.57) (where t(g) is the generation time) for generation times as high as 500 mus. The system was constructed for feasibility studies of future use at infrared and near-infrared wavelengths where conventional ILS that uses diode arrays would be either expensive or simply not possible. The CH(4) overtone transition at 619.68 nm was used to test the linearity and sensitivity of the system. Comparable performance to conventional ILS systems was demonstrated, as were the advantages of the present system for studies of laser and absorption dynamics.  相似文献   

5.
We report an investigation of two-color six-wave-mixing spectroscopy techniques using picosecond lasers for the detection of atomic hydrogen in an atmospheric-pressure hydrogen-air flame. An ultraviolet laser at 243 nm was two-photon-resonant with the 2S(1/2) <-- <-- 1S(1/2) transition, and a visible probe laser at 656 nm was resonant with H(alpha) transitions (n=3 <-- n=2). The signal dependence on the polarization of the pump laser was investigated for a two- beam polarization-spectroscopy experimental configuration and for a four- beam grating configuration. A direct comparison of the absolute signal and background levels in the two experimental geometries demonstrated a significant advantage to using the four-beam grating geometry over the simpler two-beam configuration. Picosecond laser pulses provided sufficient time resolution to investigate hydrogen collisions in the atmospheric-pressure flame. Time-resolved two-color laser-induced fluorescence was used to measure an n=2 population lifetime of 110 ps, and time-resolved two-color six-wave-mixing spectroscopy was used to measure a coherence lifetime of 76 ps. Based on the collisional time scale, we expect that the six-wave-mixing signal dependence on collisions is significantly reduced with picosecond laser pulses when compared to laser pulse durations on the nanosecond time scale.  相似文献   

6.
Visible-infrared sum-frequency spectroscopy is ideally suited to the study of surfaces and interfaces. This paper introduces new sum-frequency spectroscopy instrumentation that we have developed with two novel features: (1) stable and robust infrared generation in the 900-3100 cm(-1) (11-3.2 microm) region using an amplified Ti : sapphire oscillator with a home-built OPG/OPA, and (2) continuous tuning over either 900-2700 cm(-1) (11-3.7 microm) or 1800-3100 cm(-1) (5.5-3.2 microm) in a single experiment. All practical details of baseline correction issues due to the picosecond pulses (including variation in infrared (IR) energy, spatial and temporal overlap, Fresnel coefficients) are addressed while demonstrating signal throughout this region from an amorphous gold surface. A sum-frequency spectrum from an oriented polymer is shown as a complete example of the data treatment, which reveals the vibrational modes accessible in this wavelength region.  相似文献   

7.
A tunable, ultrafast (approximately 100 fs-approximately 1 ps) laser system generating mid-IR (3-10 microm) and UV/visible (392-417 nm, 785-835 nm) radiation is described and its output characterized. The system is designed to explore vibrational dynamics in the condensed phase in a direct, two-pulse, time-resolved manner, using Raman spectroscopy as the probe. To produce vibrational resolution, probe pulses are spectrally narrowed by use of a long doubling crystal. Frequency-resolved optical gating is used to evaluate beam characteristics. An effective method for determining the temporal overlap of the pump and probe pulses for a one-color, 400 nm configuration is illustrated. Representative results from studies of heme and paranitroaniline vibrational dynamics illustrate the effectiveness of the visible pump-visible probe portion of the system in illuminating fast structure and energy dynamics.  相似文献   

8.
We present a detailed characterization of a system for fast time-resolved spectroscopy of turbid media based on supercontinuum generation in a photonic crystal fiber. The light source provides subpicosecond pulses in the 550-1000-nm spectral range, at 85 MHz, at an average power of up to 50 mW. Wavelength-resolved detection is accomplished by means of a spectrometer coupled to a 16-channel, multianode photomultiplier tube, giving a resolution of 4.5-35 nm/channel, depending on the grating. Time-dispersion curves are acquired with time-correlated single-photon counting, and absorption and reduced scattering coefficients are determined by fitting the data to the diffusion equation. We characterized the system by measuring the time-resolved diffuse reflectance of epoxy phantoms and by assessing the performance in terms of accuracy, linearity, noise sensitivity, stability, and reproducibility. The results were similar to those from previous systems, whereas the full-spectrum (610-810 nm) acquisition time was as short as 1 s owing to the parallel acquisition. We also present the first in vivo real-time dynamic spectral measurements showing tissue oxygenation changes in the arm of a human subject.  相似文献   

9.
Kato M  Fujiura K  Kurihara T 《Applied optics》2004,43(29):5481-5488
The generation of programmable multiwavelength pulses based on the self-frequency shift of a Raman soliton is demonstrated. The approach produces tunable multiwavelength picosecond pulses. Only select multiwavelength signals with a tuning range of approximately 50 nm are generated with a repetition rate of 9.95 GHz at each wavelength channel. A bit error rate (BER) of better than 1 x 10(-9) was successfully obtained for all the measured multiwavelength Raman soliton pulses. Furthermore, it was found that the signal has an excellent relative intensity noise (RIN) of better than -135.5 dBc/Hz. The BER and RIN measurements show that the frequency-shifted Raman soliton pulses are promising for use in measurement systems, optical gating, signal processing, and wavelength routing optical packet networks with the ability to provide 1:1 communication and 1:N multicasting.  相似文献   

10.
We have constructed a multiplex infrared-ultraviolet (IR-UV) sum-frequency generation (SFG) spectrometer that has a wide tunable range (235-390 nm) of the UV probe wavelength. The tunable UV probe was obtained by doubling the signal output of an optical parametric amplifier pumped by a 400 nm picosecond pulse. A prism monochromator was used as a tunable sharp-cut bandpass filter to reduce stray light due to the scattering of the UV probe so that any wavelength within the tunable range can be chosen as that of the UV probe. The SFG spectra of p-mercaptobenzoic acid on a gold substrate was measured with 289 and 334 nm UV probes. The SFG vibrational band intensities due to the carbonyl stretch mode and a phenyl ring stretch mode measured with the 289 nm probe were approximately three times larger than those measured with the 334 nm probe. The enhancement was ascribed to an electronic resonant effect.  相似文献   

11.
This paper describes the principles and applications of time-resolved infrared radiometric (TRIR) imaging to characterization of coating systems. Examples are given of its application to the measurement of coating properties such as thickness and thermal diffusivity and to the detection of regions of coating disbond. Results are shown for coatings of different thicknesses, for test specimens containing artificial disbonds, and for thermal barrier coating specimens exhibiting real disbonds. A theoretical model describing the time development of the surface temperature of a coating during step heating is presented and the experimental results show good agreement with this model. Methods for applying the technique for inspection of large areas of coating as would be required in a process control or in service inspection environment are discussed and examples of parallel data acquisition using line heating sources are presented.  相似文献   

12.
Femtosecond stimulated Raman spectroscopy (FSRS) is a new technique that produces high-quality vibrational spectra free from background fluorescence. FSRS combines a narrow-bandwidth picosecond Raman pump pulse with an approximately 80 fs continuum probe pulse to produce stimulated Raman spectra from the pump-induced gain in the probe spectrum. The high intensity of the Raman pump combined with the broad bandwidth of the probe produces high signal-to-noise vibrational spectra with very short data acquisition times. FSRS spectra of standard solutions and solvents such as aqueous Na2SO4, aqueous KNO3, methanol, isopropanol, and cyclohexane are collected in seconds. Furthermore, stimulated Raman spectra can be obtained using just a single pump-probe pulse pair that illuminates the sample for only approximately 1 ps. Fluorescence rejection is demonstrated by collecting FSRS spectra of dyes (rhodamine 6G, chlorophyll a, and DTTCI) with varying degrees of fluorescence background and resonance enhancement. The high signal-to-noise, short data acquisition time, fluorescence rejection, and high spectral and temporal resolution of femtosecond stimulated Raman spectroscopy make it a valuable new vibrational spectroscopic technique.  相似文献   

13.
Cheng J  Lin H  Hu S  He S  Zhu Q  Kachanov A 《Applied optics》2000,39(13):2221-2229
High-quality broadband infrared high-resolution spectra were obtained by use of the intracavity laser absorption spectroscopy technique with a Ti:sapphire laser in combination with a continuous-scan Fourier-transform (FT) interferometer. With electronic filtering used to smooth out the fluctuations of the laser power, the absorption of atmospheric water vapor in the range of 12,450-12,700 cm(-1) was recorded at a resolution of 0.05 cm(-1). A signal-to-noise ratio of greater than 300 was observed in this spectrum, corresponding to a minimum detectable absorption of approximately 2 x 10(-9) cm(-1). Comparison with previous measurements by use of a conventional FT technique shows that this method gives absorption spectra with highly accurate line positions along with reasonable line intensities. Investigation of the evolution of intracavity laser absorption spectra with the generation time is also shown to be possible with a continuous-scan FT spectrometer by use of the interleave rapid-scan method.  相似文献   

14.
 为了对红外干涉型光谱分析仪采集得到的干涉条纹进行分析,准确地反演相应的光谱分布函数,设计了基于迈克尔逊干涉结构的光谱分析算法,并通过VC++完成了对应的光谱分析软件.实验对830,940,1 064 nm三个常用近红外波长进行测试,分别与FTIR500型光谱仪的检测数据和MATLAB仿真数据进行对比.实验结果显示,本算法获得的光谱数据在主波长位置选择以及幅值探测上与FTIR500型光谱仪相近,而在噪声、杂波抑制方面优于FTIR500型光谱仪.数据处理速度略低于MATLAB,但光谱分布函数信噪比要高于MATLAB的数据处理结果,证明本系统具有一定的优越性.  相似文献   

15.
Time-resolved and spatially resolved measurements of the diffuse reflectance from biological tissue are two well-established techniques for extracting the reduced scattering and absorption coefficients. We have performed a comparison study of the performance of a spatially resolved and a time-resolved instrument at wavelengths 660 and 786 nm and also of an integrating-sphere setup at 550-800 nm. The first system records the diffuse reflectance from a diode laser by means of a fiber bundle probe in contact with the sample. The time-resolved system utilizes picosecond laser pulses and a single-photon-counting detection scheme. We extracted the optical properties by calibration using known standards for the spatially resolved system, by fitting to the diffusion equation for the time-resolved system, and by using an inverse Monte Carlo model for the integrating sphere. The measurements were performed on a set of solid epoxy tissue phantoms. The results showed less than 10% difference in the evaluation of the reduced scattering coefficient among the systems for the phantoms in the range 9-20 cm(-1), and absolute differences of less than 0.05 cm(-1) for the absorption coefficient in the interval 0.05-0.30 cm(-1).  相似文献   

16.
We present our magnetooptical Kerr effect (MOKE) studies on picosecond spin dynamics in closely spaced rectangular Co dots with sizes ranging from 2/spl times/6 /spl mu/m/sup 2/ down to 100 /spl times/ 300 nm/sup 2/ under in-plane, picosecond, magnetic pulse excitation. A low-temperature-grown GaAs photoconductive switch, excited by femtosecond laser pulses, was used to produce /spl sim/25-ps-long magnetic transients along the surface of the coplanar-waveguide centerline, which contained arrays of patterned Co dots. The resulting spin dynamics in the dots was detected by a time-synchronized train of femtosecond optical probe pulses employing the time-resolved MOKE. Our experimental technique allowed us to measure the initial picosecond dynamics of spins in Co nanodots, followed by damped oscillations. We ascribe the observed results to the small-angle coherent spin precession and show that it depends on the size of magnetic dots.  相似文献   

17.
A new, to our knowledge, method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. We inject light from a 4-ns rise-time pulsed broadband flash lamp into fibers of various lengths and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning a range of approximately 3000 A are recorded from a single flash-lamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength-dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step-index 200-mum-diameter SiO(2) fiber. The results agree with the transit time determined from the bulk glass refractive index to within ?0.035% for the visible (4000-7200-A) spectrum and 0.12% for the UV (2650-4000-A) spectrum and with the attenuation specified by the fiber manufacturer to within ?10%.  相似文献   

18.
Ohta IS  Hattori M  Matsuo H 《Applied optics》2007,46(15):2881-2892
We have developed a millimeter and submillimeter Michelson-type bolometric interferometer based on a Martin-Puplett-type Fourier-transform spectrometer named multi-Fourier-transform interferometer (MuFT). We have succeeded in proving that the MuFT is capable of performing broadband imaging observations as theoretically proposed by our previous paper (OHM) [Appl. Opt. 45, 2576 (2006)]. We succeeded in acquiring the mutual coherence signal for an extended source in broadband. By analyzing the obtained mutual coherence signal following the formula proposed in OHM, 2D source images for each wavenumber from 5 cm(-1) (150 GHz) to 35 cm(-1) (1.05 THz) with a wavenumber interval of 0.4 cm(-1) (12 GHz) were successfully extracted. The large dynamic range advantage of the MuFT proposed in OHM was confirmed experimentally.  相似文献   

19.
Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.  相似文献   

20.
The nonlinear optical response of metallic-nanoparticle-containing composites was studied with picosecond and femtosecond pulses. Two different types of nanocomposites were prepared by an ion-implantation process, one containing Au nanoparticles (NPs) and the other Ag NPs. In order to measure the optical nonlinearities, we used a picosecond self-diffraction experiment and the femtosecond time-resolved optical Kerr gate technique. In both cases, electronic polarization and saturated absorption were identified as the physical mechanisms responsible for the picosecond third-order nonlinear response for a near-resonant 532 nm excitation. In contrast, a purely electronic nonlinearity was detected at 830 nm with non-resonant 80 fs pulses. Regarding the nonlinear optical refractive behavior, the Au nanocomposite presented a self-defocusing effect, while the Ag one presented the opposite, that is, a self-focusing response. But, when evaluating the simultaneous contributions when the samples are tested as a multilayer sample (silica-Au NPs-silica-Ag NPs-silica), we were able to obtain optical phase modulation of ultra-short laser pulses, as a result of a significant optical Kerr effect present in these nanocomposites. This allowed us to implement an ultrafast all-optical phase modulator device by using a combination of two different metallic ion-implanted silica samples. This control of the optical phase is a consequence of the separate excitation of the nonlinear refracting phenomena exhibited by the separate Au and Ag nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号