首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chon KS  Namba Y  Yoon KH 《Applied optics》2006,45(19):4609-4616
A multilayer coating is a useful addition to a mirror in the x-ray region and has been applied to normal incidence mirrors used with soft x rays. When a multilayer coating is used on grazing incidence optics, higher performance can be achieved than without it. Cr/Sc multilayers coated on a Wolter type I mirror substrate for a soft x-ray microscope are considered. The reflectivity and effective solid angle are calculated for Wolter type I mirrors with uniform and laterally graded multilayer coatings. The laterally graded multilayer mirror showed superior x-ray performance, and the multilayer tolerances were relaxed. This multilayer mirror could be especially useful in the soft x-ray microscope intended for biological applications.  相似文献   

2.
Supermirror hard-x-ray telescope   总被引:1,自引:0,他引:1  
The practical use of a grazing x-ray telescope is demonstrated for hard-x-ray imaging as hard as 40 keV by means of a depth-graded d-spacing multilayer, a so-called supermirror. Platinum-carbon multilayers of 26 layer pairs in three blocks with a different periodic length d of 3-5 nm were designed to enhance the reflectivity in the energy range from 24 to 36 keV at a grazing angle of 0.3 deg. The multilayers were deposited on thin-replica-foil mirrors by a magnetron dc sputtering system. The reflectivity was measured to be 25%-30% in this energy range; 20 mirror shells thus deposited were assembled into the tightly nested grazing-incidence telescope. The focused hard-x-ray image was observed with a newly developed position-sensitive CdZnTe solid-state detector. The angular resolution of this telescope was found to be 2.4 arc min in the half-power diameter.  相似文献   

3.
Vasant G. Sathe  D.M. Phase 《Vacuum》2005,77(3):301-306
The effect of elevated temperature on the structural stability and alloy formation in Mo-Zr multilayers is investigated. Mo-Zr multilayers deposited by the electron beam evaporation technique under ultra-high vacuum conditions are annealed up to 650 °C. The changes induced due to thermal treatment are observed using X-ray reflectivity (both specular and off-specular) and X-ray diffraction techniques. The Mo-Zr multilayers remained as an insoluble layered structure even after annealing as revealed from X-ray reflectivity measurements. The interfacial roughness is found to be very similar at all interfaces and decreases on annealing. The multilayer structure remains intact on annealing with expansion of the multilayer period and a marginal increase in X-ray reflectivity.  相似文献   

4.
Cr-Ti multilayers with ultrashort periods of 1.39-2.04 nm have been grown for the first time as highly reflective, soft-x-ray multilayer, near-normal incidence mirrors for transition radiation and Cherenkov radiation x-ray sources based on the Ti-2p absorption edge at E = 452 eV (lambda = 2.74 nm). Hard, as well as soft, x-ay reflectivity and transmission electron microscopy were used to characterize the nanostructure of the mirrors. To achieve minimal accumulated roughness, improved interface flatness, and to avoid intermixing at the interfaces, each individual layer was engineered by use of a two-stage ion assistance process during magnetron sputter deposition: The first 0.3 nm of each Ti and Cr layer was grown without ion assistance, and the remaining 0.39-0.72 nm of the layers were grown with high ion-neutral flux ratios phi (phiTi = 3.3, phiCr = 2.2) and a low energy Eion (ETi = 23.7 and ECr = 21.2), ion assistance. A maximum soft-x-ray reflectivity of R = 2.1% at near-normal incidence (approximately 78.8 degrees) was achieved for a multilayer mirror containing 100 bilayers with a modulation period of 1.379 nm and a layer thickness ratio of tau = 0.5. For a polarizing multilayer mirror with 150 bilayers designed for operation at the Brewster angle, 45 degrees, an extinction ratio, Rs/Rp, of 266 was achieved with an absolute reflectivity of R = 4.3%.  相似文献   

5.
Bennett GR  Folta JA 《Applied optics》2001,40(25):4588-4607
Two example ultrahigh-spatial-resolution laser-backlit grazing-incidence x-ray microscope designs for inertial confinement fusion (ICF) research have been described [Appl. Opt. 40, 4570 (2001)]. Here details of fabrication, assembly, and optical surface errors that are characteristic of present state-of-the-art superpolished multilayer-coated spherical mirrors are given. They indicate that good image qualities can be expected; in particular, <0.5-mum spatial resolution at very high x-ray energies (up to 25 keV) appears to be feasible: Existing ICF imaging diagnostics approach ~2 mum spatial at low (<2 keV) energy. The improvement in resolution compared with that of other grazing-incidence devices is attributed to a fortuitous residual on-axis aberration dependence on short wavelengths; recent advances in mirror fabrication, including a new thin-film deposition technique to correct figure errors precisely in one dimension; and novel design. For even higher resolutions, a means of creating precise aspherical mirrors of spheric-quality microroughness may be possible by use of the same deposition technique.  相似文献   

6.
Multilayer lifetime has emerged as one of the major issues for the commercialization of extreme-ultraviolet lithography (EUVL). We describe the performance of an oxidation-resistant capping layer of Ru atop multilayers that results in a reflectivity above 69% at 13.2 nm, which is suitable for EUVL projection optics and has been tested with accelerated electron-beam and extreme-ultraviolet (EUV) light in a water-vapor environment. Based on accelerated exposure results, we calculated multilayer lifetimes for all reflective mirrors in a typical commercial EUVL tool and concluded that Ru-capped multilayers have approximately 40x longer lifetimes than Si-capped multilayers, which translates to 3 months to many years, depending on the mirror dose.  相似文献   

7.
Zhu J  Wang Z  Zhang Z  Wang F  Wang H  Wu W  Zhang S  Xu D  Chen L  Zhou H  Huo T  Cui M  Zhao Y 《Applied optics》2008,47(13):C310-C314
SiC/Mg and B(4)C/Mo/Si multilayers were designed for He-II radiation at 30.4 nm. These multilayers were prepared by use of a direct current magnetron sputtering system and measured at the National Synchrotron Radiation Laboratory, China. The measured reflectivities were 38.0% for the SiC/Mg multilayer at an incident angle of 12 deg and 32.5% for the B(4)C/Mo/Si multilayer at 5 deg, respectively. A dual-function multilayer mirror was also designed by use of the aperiodic SiC/Mg multilayer. Annealing experiments were performed to investigate the thermal stability of the SiC/Mg multilayer. The interface of the SiC/Mg multilayer before and after annealing was studied by electron-induced x-ray emission spectra, which evidences the absence of thermal reaction products at the interfaces after annealing.  相似文献   

8.
Harvey JE 《Applied optics》1995,34(19):3715-3726
Residual surface roughness over the entire range of relevant spatial frequencies must be specified and controlled in many high-performance optical systems. This is particularly true for enhanced reflectance multilayers if both high reflectance and high spatial resolution are desired. If we assume that the interfaces making up a multilayer coating are uncorrelated at high spatial frequencies (microroughness) and perfectly correlated at low spatial and midspatial frequencies, then the multilayer can be thought of as a surface power spectral density (PSD) filter function. Multilayer coatings thus behave as a low-pass spatial frequency filter acting on the substrate PSD, with the exact location and shape of this cutoff being material and process dependent. This concept allows us to apply conventional linear systems techniques to the evaluation of image quality and to the derivation of optical fabrication tolerances for applications utilizing enhanced reflectance x-ray multilayers.  相似文献   

9.
We have performed an experimental investigation of Ti-, B(4)C-, B-, and Y-based multilayer mirrors for the soft x-ray?extreme ultraviolet (XUV) wavelength region between 2.0 and 12.0 nm. Eleven different material pairs were studied: Ti/Ni, Ti/Co, Ti/Cu, Ti/W, B(4)C/Pd, B/Mo, Y/Pd, Y/Ag, Y/Mo, Y/Nb, and Y/C. The multilayers were sputter deposited and were characterized with a number of techniques, including low-angle x-ray diffraction and normal incidence XUV reflectometry. Among the Ti-based multilayers the best results were obtained with Ti/W, with peak reflectances up to 5.2% at 2.79 nm at 61° from normal incidence. The B(4)C/Pd and B/Mo multilayer mirrors had near-normal incidence (5°) peak reflectances of 11.5% at 8.46 nm and 9.4% at 6.67 nm, respectively, whereas a Y/Mo multilayer mirror had a maximum peak reflectance of 25.6% at 11.30 nm at the same angle. The factors limiting the peak reflectance of these different multilayer mirrors are discussed.  相似文献   

10.
Tejnil E  Goldberg KA  Bokor J 《Applied optics》1998,37(34):8021-8029
The aberrations of a multilayer-coated reflective Schwarzschild objective, which are influenced both by mirror surface profiles and by multilayer coatings, are evaluated with a phase-shifting point diffraction interferometer operating in the extreme ultraviolet. Using wave-front measurements at multiple wavelengths near 13.4 nm, we observed chromatic aberrations and wavelength-dependent transmission changes that were due to molybdenum-silicon multilayer coatings. The effects of chromatic vignetting due to limited multilayer reflection passbands on the imaging performance of the Schwarzschild optic are considered. The coating characteristics extracted from the interferometry data on the two-mirror optical system are compared with previously reported coating properties measured on individual mirror substrates.  相似文献   

11.
Chromium-scandium (Cr-Sc) is a promising material combination for multilayer mirrors in the water window region. A possible x-ray source for laboratory use in this wavelength range is the nitrogen K(alpha) line at 3.16 nm. High reflectivities at this wavelength can be achieved with Cr-Sc multilayer mirrors if the interfaces between adjacent layers are smooth. The growth parameters of the magnetron sputtering process for these materials have been optimized. It is shown that the reflectivity of such mirrors can be considerably improved by the application of a proper bias voltage during film growth. The high quality of the multilayer films is demonstrated with copper K(alpha) x-ray reflection and transmission electron microscopy. The reflective properties of the multilayers close to the nitrogen K(alpha) line were measured with synchrotron radiation for different angles of incidence. Reflectivities between R = 5.9% for near-normal incidence (theta = 1.5 degrees) and R = 29.6% for theta = 59.9 degrees were measured.  相似文献   

12.
Multilayer mirrors capable of > 99.9% reflectivity in the far infrared (70-200 microm wavelengths) were constructed using thin silicon etalons separated by empty gaps. Calculations indicate that only three periods are required to produce 99.9% reflectivity because of the large difference between the index of refraction of silicon (3.384) and the vacuum (1). The mirror was assembled from high-purity silicon wafers, with resistivity over 4000 omega cm to reduce free-carrier absorption. Wafers were double-side polished with faces parallel within 10 arc sec. The multilayer mirror was demonstrated as a cavity mirror for the far-infrared p-Ge laser. Dependence of reflectivity on design accuracy was considered.  相似文献   

13.
The effect of layer thickness disorder in periodic multilayers on x-ray reflectivity is investigated numerically and experimentally. We present ensemble calculations, taking into account absorption and interfacial roughness. It is demonstrated that layer thickness disorder yields band broadening and increased integrated reflectivity For applications we concentrate on extrema of the ensembles, giving the highest integrated reflectivity We develop global optimization methods that can also be used to generate specified reflection band structures. In a few examples, applications of the optimization methods are discussed. To illustrate the practical applicability of the methods, we compare experimental realizations to the calculation. In one case we achieve a 42% increase in integrated reflectivity in the 130 ? < λ < 190 ? spectral range with respect to a periodic multilayer with its first-order Bragg peak in the center of that range. Accurate control of layer thicknesses is our main experimental obstacle.  相似文献   

14.
We present the fabrication and analysis of efficient and highly dispersive gratings for the x-ray and extreme ultraviolet (EUV) regime. We show that an asymmetric-cut multilayer structure can act as a near-perfect blazed grating. The precision and high line density are achieved by layer deposition of materials, which can be controlled to the angstrom level. We demonstrate this in the EUV regime with two structures made by cutting and polishing magnetron-sputtered multilayer mirrors of over 2000 bilayers thick, each with a period of 6.88 nm. These were cut at angles of 2.9° and 7.8° to the surface. Within the 3% bandwidth rocking curve of the multilayer, the angular dispersion of the diffracted wave was in agreement with the grating equation for elements with 7250 and 19,700 line pairs/mm, respectively. The dependence of the measured efficiency was in excellent agreement with a formulation of dynamical diffraction theory for multilayered structures. At a wavelength of 13.2 nm, the efficiency of the first-order diffraction was over 95% of the reflectivity of the uncut multilayer. We predict that such structures should also be effective at shorter x-ray wavelengths. Both the Laue (transmitting) and Bragg (reflecting) geometries are incorporated in our formalism, which is applied to the analysis of multilayer Laue lenses and focusing and dispersing Bragg optics.  相似文献   

15.
With the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of t he membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45 degrees provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed.  相似文献   

16.
Barthelmess M  Bajt S 《Applied optics》2011,50(11):1610-1619
Wavelength, reflectance, and stress stability of Mo/B(4)C multilayers were studied as a function of postdeposition annealing up to 900 °C. These multilayers are of interest as normal incidence coatings for wavelengths above the boron K-absorption edge. Mo/B(4)C multilayers deposited at low sputtering pressure have high compressive stress. Zero stress can be achieved at 360 °C-370 °C, but annealing at <200 °C is sufficient to reduce stress by ~40%. This stress relaxation is accompanied with a multilayer period expansion of ~0.02 nm and a <0.5% decrease in normal incidence reflectivity. The multilayer period remains stable up to ~600 °C, while intrinsic stress changes from compressive to tensile. A four-layer model with amorphous molybdenum and boron carbide layers separated by amorphous layers of molybdenum borides (Mo(x)B(y)) is presented. These interlayers are present already in the as-deposited state and continue to grow with increasing temperature. Their presence lowers the optical contrast and the achievable reflectivity. However, they also increase multilayer thermal stability. At temperatures >600 °C, a noticeable decrease in reflectivity associated with the phase transition from amorphous to crystalline molybdenum boride is observed. This is accompanied with an increase in interface and surface roughness and a change in stress as a function of temperature.  相似文献   

17.
Design of multilayer extreme-ultraviolet mirrors for enhanced reflectivity   总被引:2,自引:0,他引:2  
Singh M  Braat JJ 《Applied optics》2000,39(13):2189-2197
We show numerically that the reflectivity of multilayer extreme-UV (EUV) mirrors tuned for the 11-14-nm spectral region, for which the two-component, Mo/Be and Mo/Si multilayer systems with constant layer thickness are commonly used, can be enhanced significantly when we incorporate additional materials within the stack. The reflectivity performance of the quarter-wavelength multilayers can be enhanced further by global optimization procedures with which the layer thicknesses are varied for optimum performance. By incorporating additional materials of differing complex refractive indices-e.g., Rh, Ru, Sr, Pd, and RbCl-in various regions of the stack, we observed peak reflectivity enhancements of as much as ~5% for a single reflector compared with standard unoptimized stacks. We show that, in an EUV optical system with nine near-normal-incidence mirror surfaces, the optical throughput may be increased by a factor as great as 2. We also show that protective capping layers, in addition to protecting the mirrors from environmental attack, may serve to improve the reflectivity characteristics.  相似文献   

18.
In this report, we demonstrate a convenient method of fabricating single-walled carbon nanotubes/organic semiconductor hybrid ultrathin multilayers using a layer-by-layer self-assembly approach. Single-walled carbon nanotubes were solubilized by water-soluble cationic alcian blue pyridine variant and anionic copper phthalocyanine-3,4′,4″,4′″-tetrasulfonic acid tetrasodium salt, which were then utilized for electrostatic layer-by-layer multilayer fabrication. The solubilization ability of single-walled carbon nanotubes was studied in water by UV-vis absorption spectroscopy. The composites were highly dispersed owing to the π-π interactions. In situ surface plasmon resonance spectroscopy during the layer-by-layer multilayer fabrication indicated a stepwise increase in reflectivity, indicating the successive formation of nanostructured hybrid ultrathin films. Cyclic voltammetry revealed that the electroactivity of the hybrid film was enhanced by the incorporation of single-walled nanotubes.  相似文献   

19.
We present first experimental results on the fabrication and characterization of depth-graded X-ray multilayers providing a broad and well-defined reflectivity profile. Following a theoretical approach including analytical and numerical techniques we have designed and deposited multilayer structures with a practically constant reflectivity of about 20% around the first Bragg-reflection and a bandwidth of about 20% in both incident angle and photon energy. A precise characterization using numerical simulations allows the determination of residual errors in the structure, which can appear during or after the coating process. The discussion includes practical issues and technical limitations of the deposition process as well as novel applications in modern X-ray optics.  相似文献   

20.
We study theoretically and experimentally the increase of normal incidence reflectivity generated by addition of a third material in the period of a standard periodic multilayer, for wavelengths in the range 20 to 40 nm. The nature and thickness of the three materials has been optimized to provide the best enhancement of reflectivity. Theoretical reflectivity of an optimized B4C/Mo/Si multilayer reaches 42% at 32 nm. B4C/Mo/Si multilayers have been deposited with a magnetron sputtering system and a reflectivity of 34% at 32 nm has been measured on a synchrotron radiation source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号