首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle   总被引:2,自引:1,他引:1  
Using the end discharge of micro-rod-shaped electrode to scan layer by layer, micro-electrical discharge machining (EDM) can fabricate complex 3D micro-structures. During the machining process, the discharge state is broken frequently due to the wear of the tool electrode and the relative scanning motion. To keep a favorable discharge gap, the feed spindle of the tool electrode needs the characteristics of high-frequency response and high resolution. In this study, an experimental system with a macro/micro-dual-feed spindle was designed to improve the machining performance of servo scanning 3D micro-EDM (3D SSMEDM), which integrates an ultrasonic linear motor as the macro-drive and a piezoelectric (PZT) actuator as micro-feeding mechanism. Based on LabVIEW and Visual C++ software platform, a real-time control system was developed to control coordinately the dual-feed spindle to drive the tool electrode. The micro-feed motor controls the tool electrode to keep the favorable discharge gap, and the macro-drive motor realizes long working range by a macro/micro-feed conversion. The emphasis is paid on the process control of the 3D SSMEDM based on macro/micro-dual-feed spindle for higher machining accuracy and efficiency. A number of experiments were carried out to study the machining performance. According to the numerical control (NC) code, several typical 3D micro-structures have been machined on the P-doped silicon chips. Our study results show that the machining process is stable and the regular discharge ratio is higher. Based on our fundamental machining experiments, some better-machined effects have been gained as follows. By machining a micro-rectangle cavity (960 μm×660 μm), the machined depth error can be controlled within 2%, the XY dimensional error is within 1%, the surface roughness Ra reaches 0.37 μm, and the material removal rate is about 1.58×104 μm3/s by using a tool electrode of Φ=100 μm in diameter. By machining multi-micro-triangle cavities (side length 700 μm), it is known that the machining repeatability error is <0.7%.  相似文献   

2.
Because of its excellent anodic bonding property and surface integrity, borosilicate glass is usually used as the substrate for micro-electro mechanical systems (MEMS). For building the communication interface, micro-holes need to be drilled on this substrate. However, a micro-hole with diameter below 200 μm is difficult to manufacture using traditional machining processes. To solve this problem, a machining method that combines micro electrical-discharge machining (MEDM) and micro ultrasonic vibration machining (MUSM) is proposed herein for producing precise micro-holes with high aspect ratios in borosilicate glass. In the investigations described in this paper, a circular micro-tool was produced using the MEDM process. This tool was then used to drill a hole in glass using the MUSM process. The experiments showed that using appropriate machining parameters; the diameter variations between the entrances and exits (DVEE) could reach a value of about 2 μm in micro-holes with diameters of about 150 μm and depths of 500 μm. DVEE could be improved if an appropriate slurry concentration; ultrasonic amplitude or rotational speed was utilized. In the roundness investigations, the machining tool rotation speed had a close relationship to the degree of micro-hole roundness. Micro-holes with a roundness value of about 2 μm (the max. radius minus the min. radius) could be obtained if the appropriate rotational speed was employed.  相似文献   

3.
A study of EDM and ECM/ECM-lapping complex machining technology   总被引:1,自引:0,他引:1  
EDM (electrodischarge machining) and ECM (electrochemical machining)/ECM-lapping complex machining is investigated in this paper. First, EDM shaping and ECM finishing technology are investigated. These processes are carried out in sequence on the same machine tool with the same electrode (copper) and the same machining liquid (water). Two types of EDM and ECM complex machining are investigated. One is with a formed electrode, and the other is with simple-shape electrode scanning. The complex machining with electrode scanning is applied to produce small and various-shaped components without making a formed electrode. The EDM surface of 1 μm Ra is improved to 0.2 μm Ra by applying ECM. Second, in order to get a smoother surface, a new EDM and ECM-lapping complex machining technology is developed. The surface roughness of a machined hole is improved to 0.07 μm Ra by applying 2 min of ECM lapping. The surface finishing of a hole shape is demonstrated with the complex machining technology.  相似文献   

4.
In this research vibration-EDM is realized by the vibrating worktable designed, which is employed in the micro-punching machine we had already developed. It is found that larger feed and better surface finish can be achieved in micro-EDM with vibration machining. Circular and noncircular micro-electrodes of diameter below 200 μm were fabricated with vibration-EDM and the setup of u-axis. Experiments to punch micro-holes of diameter 200 μm on SUS304 stainless steel and brass strips were carried out. Mass punching of micro-holes on brass strip was performed successfully, using the automatic feeding system developed. The capability of micro-punching and effects of parameters on the quality of punched micro-hole are studied.  相似文献   

5.
Tungsten carbide (WC) is an extremely hard and difficult-to-cut material used extensively in manufacturing because of its superior wear and corrosion resistance. Besides diamond-charged grinding wheels, micro-EDM is an effective method of machining this extremely hard and brittle material. Since micro-EDM is more generally an electro-thermal process, the supplied energy from a pulse generator is an important factor determining the performance of the micro-EDM process. This study investigates the influence of major operating parameters on the performance of micro-EDM of WC with focus in obtaining quality micro-holes in both transistor and RC-type generators. Experimental investigations were conducted with view of obtaining high-quality micro-holes in WC with small spark gap, better dimensional accuracy, good surface finish and circularity. In micro-EDM, the fabrication of micro-parts requires minimization of the pulse energy supplied into the gap which can be fulfilled using the RC-generator. It was observed that the RC-generator can produce better quality micro-holes in WC, with rim free of burr-like recast layer, good dimensional accuracy and fine circularity. Moreover, the smaller debris formed due to low discharge energy in RC-type micro-EDM can be easily flushed away from the machined area resulting in surface free of burr and resolidified molten metal. Therefore, RC-type micro-EDM could be more suitable for fabricating micro-structures in WC, where accuracy and surface finish are of prime importance.  相似文献   

6.
This study presents a low-cost hybrid fabrication process that produces micro-holes of less than 200 μm in diameter. First of all, a micro-EDM hole-drilling is employed to perforate micro-holes through the mirror-like substrate (SUS304), which is cylindrical in shape. The oily wax also known as “sacrificial material” is extruded and formed onto the SUS304 substrate, resulting in a precision cylindrical micro-wax pillar mould. A precision electroforming is then conducted to deposit a thick nickel metal layer onto the substrate, and subsequently the wax mould is completely removed and revealed a perforated micro-hole array after releasing from the substrate. Experimental results show that the wax mould has an excellent duplication capability. The finished micro-hole array has an average hole-diameter of 165.3 μm and demonstrates ideal geometric accuracy. The proposed approach can significantly cost down and contribute to the precision machining industry.  相似文献   

7.
A new micromachining method for the fabrication of micro-metal structures by using micro-reversible electrical discharge machining (EDM) was investigated. The reversible machining combines the micro-EDM deposition process with the selective removal process, which provides the ability of depositing or removing metal material using the same micro-EDM machining system. From the discharge mechanism of micro-EDM, the process conditions of micro-EDM deposition were analyzed firstly. Using the brass and steel materials as a tool electrode, the micro-cylinders with 200 μm in diameter and height-to-diameter ratio of more than 5 were deposited on a high-speed steel surface. Then the machining procedure was transformed easily from deposition to selective removal process by switching the process conditions. Different removal strategies including micro-EDM drilling and micro-EDM milling were used in the machining. Micro-holes with 80 μm in diameter are drilled successfully in the radial direction of the deposited micro-steel cylinder. Also, a brass square column with 70 μm in side length and 750 μm in height, and a micro-cylinder with 135 μm in diameter and 1445 μm in height are obtained by using micro-EDM milling. Finally, the characteristics of the deposited material were analyzed. The results show that the material components of a deposited micro-cylinder are almost the same as those of the tool electrode, and the metallurgical bonding has been formed on the interface. In addition, the Vickers-hardness of 454Hv of the steel deposited material is higher when compared to the hardness of 200Hv of the raw steel electrode.  相似文献   

8.
Electrochemical discharge machining (ECDM) is an emerging non-traditional machining process that involves high-temperature melting assisted by accelerated chemical etching. In this study, the tool electrode (200 μm in diameter) is fabricated by wire electrical discharge grinding (WEDG). After the tool electrode is machined, the surface roughness of tool electrode materials (stainless steel, tungsten carbide, and tungsten) is different because of the physical properties. However, the surface roughness affects the wettability on tool electrode, and also changed the coalesce status of gas film in ECDM. Hence, this study explores the wettability and machining characteristics of different tool electrode materials and their impact on gas film formation. Their machining performance and extent of wear under gravity-feed micro-hole drilling are also examined. Experimental results show that the optimal voltage of different tool electrode can shed light on the machining performance. Moreover, wettability of tool electrode is determined by surface roughness of tool material, which in turn affects the coalesce status of gas film, machining stability and micro-hole diameter achieved. In addition, differences in tool material also results in variations in machining speed. Significant tool wear is observed after repeated gravity-feed machining of 50 micro-holes.  相似文献   

9.
 Surfaces generated when machining Ti–6Al–4V alloy with PCD tools using conventional and high pressure coolant supplies was investigated. Longer tool life was recorded when machining Ti–6Al–4V with high-pressure coolant supplies and the recorded surface roughness Ra values were well below the tool rejection criterion (1.6 μm) for all cutting conditions investigated. The micro-structure of the machined surfaces were examined on a scanning electron microscope. Micrographs of the machined surfaces show that micro-pits and re-deposited work material were the main damages to the surfaces. Micro-hardness analysis showed hardening of the top machined surfaces when machining with conventional coolant while softening of the subsurface layer was observed when machining under high-pressure coolant supplies. The later is probably due to lower heat generated, with the consequent tempering action when machining with PCD tools with high-pressure coolant supplies. The microstructure below the machined surfaces had minimal or no plastic deformation when machining with conventional and high-pressure coolant supplies.  相似文献   

10.
This study introduces an abrasive jet polishing (AJP) technique in which the pneumatic air stream carries not only abrasive particles, but also an additive of either pure water or pure water with a specified quantity of machining oil. Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of electrical discharge machined SKD61 mold steel specimens. A series of experimental trials are then conducted using the optimal AJP parameters to investigate the respective effects of the additive type and the abrasive particle material and diameter in achieving a mirror-like finish of the polished surface. The Taguchi trials indicate that when polishing is performed using pure water as an additive, the optimal processing parameters are as follows: an abrasive material to additive ratio of 1:2, an impact angle of 30°, a gas pressure of 4 kg/cm2, a nozzle-to-workpiece height of 10 mm, a platform rotational velocity of 200 rpm, and a platform travel speed of 150 mm/s. Applying these processing parameters, it is found that the optimal polishing effect is attained using #8000SiC abrasive particles and a 1:1 mixture of water-solvent machining oil and pure water. The experimental results show that under these conditions, the average roughness of the electrical discharge machined SKD61 surface is reduced from an original value of Ra=1.03 μm (Rmax: 7.74 μm) to a final value of Ra=0.13 μm (Rmax: 0.90 μm), corresponding to a surface roughness improvement of approximately 87%.  相似文献   

11.
Cutting process of glass with inclined ball end mill   总被引:3,自引:0,他引:3  
Cutting processes with ball end mills are discussed for machining microgrooves on glasses. A surface is finished in undeformed chip thickness less than 1 μm at the beginning and at the end of the cut during the cutter rotation. The milling process is applied to glass machining. A crack-free surface can be finished in a large axial depth of cut more than 10 μm. Because glass undergoes almost no elastic deformation, roughness on a cutting edge in glass machining has a larger influence on surface finish than that of metal machining. The rotational axis of the tool is inclined to improve the surface finish. The cutting processes are modeled to show the effect of the tool inclination on the machined surface with considering the edge roughness. The tool inclination compensates for deterioration of the surface finish induced by the edge roughness in the presented model. The improvement of the surface finish is verified in the cutting experiments with the tool inclination. The orthogonal grooves 15–20 μm deep and 150–175 μm wide, then, are machined with the crack-free surfaces to prove efficiency and surface quality in the milling process.  相似文献   

12.
In microhole machining of metal, micro electro-discharge machining (MEDM) is an effective method that can easily create a hole with a diameter under 100 μm. Due to the poor surface quality and shape of MEDM, a machining method that compounds MEDM and micro ultrasonic vibration lapping (MUVL) is proposed here to allow the production of high precision microholes with high aspect ratios. In our investigations, first, a circular or stepped circular microtool was made by the MEDM process, and the tool was used to create a microhole on a small piece of titanium plate in the same machining process. Finally, the abrasive particles driven by the same tool were utilized to grind this hole in the MUVL procedure, and a hole with a diameter about 100 μm can be obtained. Owing to the microtool and workpiece not taking apart from the clamping apparatus during different machining steps, the microhole was processed in the co-axial situation, so the precise shape and perfect surface can be obtained easily. For example, the diameter variation between the entrances and exits of the microholes could reach a value of about 5 μm when the workpiece had a thickness of 500 μm, if the circular microtools was used. Meanwhile, the roundness of the microholes clearly improved, regardless of whether circular or stepped tools were used. However, owing to the perfect grinding effect between the microholes and microtools, the stepped circular tools produced high quality surfaces more easily than the circular tools.  相似文献   

13.
Owing to the reduced tool area and poor flushing conditions in deep holes, tool wear in micro-electrical discharge machining (EDM) is more significant than in macro-EDM. In micro-EDM drilling, the z-axis of the tool position is monitored as machining progresses. However, due to significant electrode wear, the machined hole depth is not identical to the programmed depth of the hole, and thus this will result in geometrical inaccuracy. This paper presents a new micro-EDM drilling method, in which the material removal volume is estimated as machining progresses. Compensation length is calculated and adjustment is made repeatedly along the tool path until the targeted material removal volume is reached. A real-time material removal volume estimator is developed based on the theoretical electro-thermal model, number of discharge pulse and pulse discrimination system. Under various energy input and machining depth settings, the experimental and estimated results are found to be in satisfactory agreement with average error lower than 14.3% for stainless steel, titanium, and nickel alloy work materials. The proposed drilling method can compensate the tool wear and produce more accurate micro-holes as compared to other methods. Experimental work also shows that the proposed method is more reliable as compared to the uniform wear method. In drilling micro-holes of 900 μm depth, the depth error can be reduced to 4% using the proposed method.  相似文献   

14.
Ultrasonic vibration was applied to dielectric fluid by a probe-type vibrator to assist micro electrical discharge machining of deep micro-holes in ceramic materials. Changes of machined hole depth, hole geometry, surface topography, machining stability and tool material deposition under various machining conditions were investigated. Results show that ultrasonic vibration not only induces stirring effect, but also causes cloud cavitation effect which is helpful for removing debris and preventing tool material deposition on machined surface. The machining characteristics are strongly affected by the vibration amplitude, and the best machining performance is obtained when carbon nanofibers are added into the vibrated dielectric fluid. As test pieces, micro-holes having 10 μm level diameters and high aspect ratios (>20) were successfully fabricated on reaction-bonded silicon carbide in a few minutes. The hybrid EDM process combining ultrasonic cavitation and carbon nanofiber addition is demonstrated to be useful for fabricating microstructures on hard brittle ceramic materials.  相似文献   

15.
Polishing wheels with homogeneously organized micro abrasive grains, uniformly dispersed by electrophoretic deposition (EPD), can be applied in mirror-like polishing process. This work studies the characteristics of EPD and mechanical polishing when SUS316LVV is polished. Abrasive grains with blunt edges are easily ablated from the polishing wheel by friction during polishing. The polishing wheel can be continuously refreshed by adding new abrasives. A superior surface polishing quality can thus be obtained. The control parameters of the EPD polishing process include the working voltage, the rate of rotation of the polishing wheel, the polishing feed rate, the polishing time, the axial loading and the pH value of the electrolyte, etc. Experimental results indicate not only that SiC particles of size 0.9–1.5 μm were used in EPD polishing, but also that the initial roughness of a machined surface could be improved from 0.5 μm Ra to 0.02 μm in 8 min, yielding a mirror-like surface.  相似文献   

16.
A new approach to cutting state monitoring in end-mill machining   总被引:2,自引:1,他引:1  
A new cutting state monitoring approach is proposed for the real-time predicting of the machining trouble and the surface quality of the machined products. In this approach, the relationships among the mechanical model of cutting process and its corresponding time series model, the surface roughness of the machined workpiece are evaluated through theoretical analysis and experimental investigation. It is therefore revealed that there is the linear relationships among the AR parameter a1, the stiffness k3 of cutting model and surface roughness Pz, and consequently the cutting process state can be estimated by only monitoring time series parameter a1 of vibration signal measured during machining operation. In particular, it was found that the variation in the surface roughness of Pz=3–5 μm can be fully monitored.  相似文献   

17.
比较各种微细阵列孔的电火花加工方法,分析了单电极加工微细阵列孔方法的优点。以去离子水作为工作液,在已研制成功的微喷部件阵列孔电火花加工机床上进行单电极加工微细阵列孔的工艺试验,研究电源参数对微细阵列孔的孔径一致性、加工效率及电极损耗的影响规律。优化微细阵列孔加工的电参数,实现稳定的一次性加工256个直径小于50μm、偏差小于2μm的微细阵列孔。  相似文献   

18.
A vibration-assisted spherical polishing system driven by a piezoelectric actuator has been newly developed on a machining center to improve the burnished surface roughness of hardened STAVAX plastic mold stainless steel and to reduce the volumetric wear of the polishing ball. The optimal plane surface ball burnishing and vibration-assisted spherical polishing parameters of the specimens have been determined after conducting the Taguchi's L9 and L18 matrix experiments, respectively. The surface roughness Ra=0.10 μm, on average, of the burnished specimens can be improved to Ra=0.036 μm (Rmax=0.380 μm) using the optimal plane surface vibration-assisted spherical polishing process. The improvement of volumetric wear of the polishing ball was about 72% using the vibration-assisted polishing process compared with the non-vibrated polishing process. A simplified kinetic model of the vibration-assisted spherical polishing system for the burnished surface profile was also derived in this study. Applying the optimal plane surface ball burnishing and vibrated spherical polishing parameters sequentially to a fine-milled freeform surface carrier of an F-theta scan lens, the surface roughness of Ra=0.045 μm (Ry=0.65 μm), on average, within the measuring range of 149 μm×112 μm on the freeform surface, was obtainable.  相似文献   

19.
The effect of machined topography and integrity on fatigue life   总被引:4,自引:3,他引:4  
The paper reviews published data which address the effect of machining (conventional and non-conventional processes) and the resulting workpiece surface topography/integrity on fatigue performance, for a variety of workpiece materials. The effect of post-machining surface treatments, such as shot peening, are also detailed. The influence of amplitude height parameters (Ra, Rt), amplitude distribution (Rsk) and shape (Rku) parameters, as well as spatial (Std, Sal) and hybrid (Ssc) measures, are considered.There is some disagreement in the literature about the correlation between workpiece surface roughness and fatigue life. In most cases, it has been reported that lower roughness results in longer fatigue life, but that for roughness values in the range 2.5–5 μm Ra it is primarily dependent on workpiece residual stress and surface microstructure, rather than roughness. In the absence of residual stress, machined surface roughness in excess of 0.1 μm Ra has a strong influence on fatigue life. Temperatures above 400 °C reduce the effects of both residual stress and surface roughness on fatigue, due to stress relieving and the change in crack initiation from the surfaces to internal sites. The presence of inclusions an order of magnitude larger than the machined surface roughness generally overrides the effect of surface topography.  相似文献   

20.
The main concern in the present study is the surface roughness variations on the drilled surface and extension of surface and sub-surface deformation due to drilling. The influence of different tools and cutting conditions on Al2219/15%SiCp and Al2219/15%SiCp-3%Graphite (hybrid) composites is investigated experimentally. The composites are fabricated by liquid metallurgy method. The drilling tests are conducted with carbide and coated carbide tools. The surface roughness decreases with the increase in cutting speed and increases with the increase in feed rate. The surface is analyzed using scanning electron microscope (SEM). Microhardness profiles indicate that the subsurface deformation extends up to a maximum of 120 μm below the machined surface for Al2219/15SiCp-3Gr composite when compared to 150 μm in Al2219/15SiCp composite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号