首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibitory amino acid gamma amino butyrate (GABA) has been shown to profoundly alter the integration of arterial baroreceptor inputs within the nucleus of the solitary tract (NTS). However, the relative roles of the major GABA receptor subtypes, the GABA(A) and the GABA(B) receptors, in the modulation of monosynaptic compared to polysynaptic afferent transmission within the NTS remain uncharacterized. In anesthetized rats, three types of NTS neuron were identified by their responses to aortic depressor nerve (ADN) stimulation; monosynaptic neurons (MSNs), polysynaptic neurons (PSNs) and ADN non-evoked neurons (NENs). Selective GABA(A) and GABA(B) agonists were applied to these neurons using iontophoretic techniques. The endogenous ligand GABA (2 mM), the selective GABA(A) agonist muscimol (0.04 and 0.02 mM) and the GABA(B) agonist baclofen (10 mM) all inhibited the spontaneous discharge of MSNs, PSNs and NENs (P < 0.01 for each group). In addition, GABA, muscimol and baclofen also inhibited ADN evoked discharge in both MSNs and PSNs (P < 0.05 for each group). Both GABA and baclofen significantly inhibited ADN evoked discharge in PSNs to a greater extent than in MSNs (P < 0.05 for each comparison). Muscimol at both doses, however, similarly inhibited ADN evoked discharge in both MSNs and PSNs. Examination of action potential amplitude and co-iontophoretic application of glutamate and GABA agonists suggested that GABA and muscimol induced inhibition were likely to be post-synaptic in origin, while baclofen produced both pre-synaptic and post-synaptic inhibition, depending upon the cell. In conclusion, GABA can influence baroreceptor afferent integration through both pre-synaptic and post-synaptic mechanisms. Furthermore, the effects of GABA(B) agonists are variable depending upon the level of afferent integration, with MSNs being generally less sensitive than PSNs.  相似文献   

2.
Single units in the region of the medial nucleus tractus solitarius (NTS), responding to electrical stimulation of gastric vagal fibers, were recorded in an in vitro neonatal rat brainstem-gastric preparation. gamma-Aminobutyric acid (GABA) subreceptor agonists and antagonists were applied to the gastric and brainstem compartments of the bath chamber to evaluate the peripheral gastric and central brainstem GABAergic effects on NTS neuronal activity. The gastric effects of the GABAA receptor agonist muscimol and GABAB receptor agonist baclofen were evaluated on 55 tonic units that received the gastric vagal inputs. For approximately 58% (32 of 55) and 38% (21 of 55) of the units observed, muscimol (30 microM; IC50 = 2.0 microM) and baclofen (30 microM; IC50 = 1.5 microM) in the gastric compartment induced a concentration-dependent inhibition of 36.2 +/- 3.1% (mean +/- S.E.) and 31.0 +/- 2.9% of the control level of the NTS neuronal activity, respectively. The brainstem effects of muscimol and baclofen were tested on 51 units. For approximately 90% (46 of 51) and 78% (40 of 51) of the units tested, muscimol (30 microM; IC50 = 1.3 microM) and baclofen (30 microM; IC50 = 1.1 microM) in the brainstem compartment produced a concentration-dependent inhibition of 54.1 +/- 3.4% and 48.9 +/- 3. 5% of the control level, respectively. The remaining NTS units were not affected by these two GABA agonists. Bicuculline (10 microM) and saclofen (10 microM), the GABAA and GABAB subreceptor antagonists, competitively antagonized the gastric and brainstem effects by muscimol and baclofen, respectively. Our results demonstrated that both GABAA and GABAB receptors in the stomach and brainstem play an important role in activity modulation of the medial NTS neurons receiving gastric vagal inputs in neonatal rats.  相似文献   

3.
Experiments were done in urethane anesthetized rats to investigate the effect of electrical and glutamate stimulation of arcuate nucleus (Arc) on the discharge rate of subfornical organ (SFO) neurons that responded to either plasma hypernatremia or angiotensin II (ANG II). Extracellular recordings were made from 253 histologically verified single neurons in SFO. Of these, 40.3% (102/253) responded with excitation and 10% (25/253) with inhibition to Arc stimulation. Thirty-five (34.3%) of the units excited by Arc were also excited by intracarotid infusion of hypertonic (0.5 M) NaCl. In addition, 37 (36.3%) of the units excited by Arc were also excited by intracarotid infusion of ANG II. Furthermore, 10 (40.0%) of the units inhibited by Arc were found to be excited by ANG II. None of the units inhibited by Arc stimulation were responsive to plasma hypernatremia. These data indicate that inputs from Arc neurons converge onto SFO neurons that alter their discharge rate during changes in plasma concentration of Na+ or ANG II. These results suggest that Arc may be involved in body fluid balance and circulatory regulation by modulating the activity of SFO neurons that function in the detection of blood-borne signals from the depletion of intra- and extra-cellular fluid volumes.  相似文献   

4.
We describe an intramedullary nitric oxide synthase (NOS) neural pathway that projects from the nucleus tractus solitarius (NTS) to the rostral nucleus ambiguus (NA) in the rabbit. With the use of NADPH diaphorase histochemistry and NOS immunohistochemistry, a compact group of NOS-positive perikarya was identified in the central subnucleus of the NTS dorsomedial to the tractus solitarius and rostral to the obex. A dense network of NOS terminals was seen in the rostral NA. We investigated whether NOS terminals in the NA derive from NOS perikarya in the central NTS and whether the central NOS pathway links esophageal afferents and efferents. In some rabbits, the central NTS was unilaterally lesioned. In others, Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected into the central NTS, or cholera toxin-gold was injected into the NA, or cholera toxin-horseradish peroxidase (HRP) was injected into the wall of the esophagus. The medulla was subsequently processed to demonstrate PHA-L, cholera toxin-gold, HRP, and NOS reactivity. Seven days after the NTS lesion, we observed a marked decrease in the density of NOS terminals in the ipsilateral NA. After injection of PHA-L into the central NTS, a dense group of PHA-L fibres was seen in the rostral NA, principally ipsilaterally. Afferent fibres from the esophagus were found around the NOS cell bodies in the central NTS, and many of these NOS neurons were double labeled with cholera toxin-gold after injection of this tracer into the NA. NOS terminals were found around NA neurons that were retrogradely labelled from the esophagus. We conclude that the NOS neurons in the central NTS act as interneurons in a central pathway connecting esophageal afferents and efferents.  相似文献   

5.
The circadian timing of the suprachiasmatic nucleus (SCN) is modulated by its neural inputs. In the present study, we examine the organization of the neural inputs to the rat SCN using both retrograde and anterograde tracing methods. After Fluoro-Gold injections into the SCN, retrogradely labeled neurons are present in a number of brain areas, including the infralimbic cortex, the lateral septum, the medial preoptic area, the subfornical organ, the paraventricular thalamus, the subparaventricular zone, the ventromedial hypothalamic nucleus, the posterior hypothalamic area, the intergeniculate leaflet, the olivary pretectal nucleus, the ventral subiculum, and the median raphe nuclei. In the anterograde tracing experiments, we observe three patterns of afferent termination within the SCN that correspond to the photic/raphe, limbic/hypothalamic, and thalamic inputs. The median raphe projection to the SCN terminates densely within the ventral subdivision and sparsely within the dorsal subdivision. Similarly, areas that receive photic input, such as the retina, the intergeniculate leaflet, and the pretectal area, densely innervate the ventral SCN but provide only minor innervation of the dorsal SCN. A complementary pattern of axonal labeling, with labeled fibers concentrated in the dorsal SCN, is observed after anterograde tracer injections into the hypothalamus and into limbic areas, such as the ventral subiculum and infralimbic cortex. A third, less common pattern of labeling, exemplified by the paraventricular thalamic afferents, consists of diffuse axonal labeling throughout the SCN. Our results show that the SCN afferent connections are topographically organized. These hodological differences may reflect a functional heterogeneity within the SCN.  相似文献   

6.
7.
We investigated the fine structure of the semicompact formation of the nucleus ambiguus (AmS), which was identified by retrogradely labeled pharyngeal (PH) motoneurons. When cholera toxin subunit B-conjugated horseradish peroxidase was injected into the lower pharyngeal muscle, many retrogradely labeled PH neurons were found throughout the AmS. Besides the PH neurons, two types of neurons were recognized in the AmS: unlabeled medium-sized neurons and unlabeled small neurons. The PH neuron was large (27.6 x 44.1 microm) and polygonal, and contained many Nissl bodies and well-developed cell organelles with a prominent spherical nucleus. The medium-sized neuron was dark and oval (19.3 x 33.2 microm), and contained many free ribosomes and much swollen rough endoplasmic reticulum with a distorted oval nucleus. The small neuron was spindle-shaped (12.3 x 20.2 microm), and had poorly developed cell organelles with an irregularly shaped nucleus. The average number of axosomatic terminals in a sectional plane was largest in the PH neurons (32.8), smaller in the medium-sized neurons (23.1), and smallest in the small neurons (6.3). The number of axo-somatic terminals containing round vesicles (Gray's type I) was almost equal to that of terminals containing pleomorphic vesicles (Gray's type II) in the PH neuron, and slightly smaller in the small and the medium-sized neurons. About 60% of the axodendritic terminals were Gray's type I, and 40% were type II. These results indicate that there are two different types of interneurons besides the PH motoneurons in the AmS.  相似文献   

8.
Previous research from this laboratory has shown that substance P-immunoreactive (SP) terminals synapse upon negative chronotropic vagal preganglionic neurons (VPNs), but not upon negative dromotropic VPNs, of the ventrolateral nucleus ambiguus (NA-VL). Moreover, SP agonists injected into NA-VL cause bradycardia without decreasing AV conduction. In the current study, we have: (1) defined the electron microscopic characteristics of the SP neurons of NA-VL in dog; and (2) tested the hypothesis that SP nerve terminals synapse upon negative inotropic VPNs of NA-VL, retrogradely labeled from the cranial medial ventricular (CMV) ganglion. Numerous SP terminals and a few SP neurons were observed in the vicinity of retrogradely labeled neurons. SP terminals were observed forming synapses with unlabeled dendrites and with SP dendrites, but never with the retrogradely labeled neurons. Together, these results and earlier findings suggest that SP agonists may be able to induce bradycardia without decreasing AV conduction or ventricular contractility.  相似文献   

9.
BACKGROUND: Cetirizine is a H1 histamine antagonist which possesses anti-inflammatory properties through inhibition of leucocyte recruitment and activation, and reduction of ICAM-1 expression on mucosal epithelial cells. No studies have addressed the potential anti-inflammatory activities of cetirizine on skin keratinocytes. OBJECTIVES: Cetirizine and hydrocortisone were compared in their capacity to counteract human keratinocytes activation by IFNgamma. In particular, expression of immuno-modulatory membrane molecules and chemokine release have been examined. METHODS: Keratinocyte cultures established from normal skin of healthy donors were activated by IFNgamma (100-500 U/mL) in the absence or presence of cetirizine (10(-3)-10(3) microM) or hydrocortisone (10(-3)-10(2) microM), and tested for expression of ICAM-1, HLA-DR, MHC class I and CD40 as well as for release of RANTES, IL-8, macrophage chemotactic protein-1 (MCP-1) and granulocyte macrophage-colony stimulating factor (GM-CSF). RESULTS: Cetirizine at high concentrations (10(2)-10(3) microM) markedly inhibited IFNgamma-induced expression of membrane ICAM-1, HLA-DR and up-regulation of MHC class I, but had no effect on CD40 expression. In contrast, hydrocortisone (10(2) microM) enhanced IFNgamma-induced membrane ICAM-1, reduced expression of HLA-DR and did not alter expression of MHC class I and CD40. Consistently, high doses of cetirizine decreased, whereas hydrocortisone increased, soluble ICAM-1 levels in the supernatants of IFNgamma-treated keratinocytes. The inhibiting and stimulating effects of cetirizine and hydrocortisone, respectively, on ICAM-1 expression were confirmed at the mRNA level by Northern blot analysis. Finally, cetirizine, but not hydrocortisone, inhibited the release of MCP-1 and RANTES from IFNgamma-stimulated keratinocytes. In contrast, hydrocortisone, but not cetirizine, reduced GM-CSF and IL-8 release. CONCLUSIONS: The results indicate that cetirizine has the capacity to block the IFNgamma-induced activation of keratinocytes, and thus can exert important regulatory effects on TH1 cell-mediated immune responses in the skin. The high doses required for evidencing these activities suggest the potential benefits of a topical use of cetirizine.  相似文献   

10.
The potential influence of GABAergic input to cholinergic basalis neurons was studied in guinea-pig basal forebrain slices. GABA and its agonists were applied to electrophysiologically-identified cholinergic neurons, of which some were labelled with biocytin and confirmed to be choline acetyltransferase-immunoreactive. Immunohistochemistry for glutamate decarboxylase was also performed in some slices and revealed GABAergic varicosities in the vicinity of the biocytin-filled soma and dendrites of electrophysiologically-identified cholinergic cells. From rest (average - 63 mV), the cholinergic cells were depolarized by GABA. The depolarization was associated with a decrease in membrane resistance and diminution in firing. The effect was mimicked by muscimol, the specific agonist for GABA(A) receptors, and not by baclofen, the specific agonist for GABA(B) receptors, which had no discernible effect. The GABA- and muscimol-evoked depolarization and decrease in resistance were found to be postsynaptic since they persisted in the presence of solutions containing either high Mg2+/low Ca2+ or tetrodotoxin. They were confirmed as being mediated by a GABA(A) receptor, since they were antagonized by bicuculline. The reversal potential for the muscimol effect was estimated to be approximately -45 mV, which was -15 mV above the resting membrane potential. Finally, in some cholinergic cells, spontaneous subthreshold depolarizing synaptic potentials (average 5 mV in amplitude), which were rarely associated with action potentials, were recorded and found to persist in the presence of glutamate receptor antagonists but to be eliminated by bicuculline. These results suggest that GABAergic input may be depolarizing, yet predominantly inhibitory to cholinergic basalis neurons.  相似文献   

11.
The excitable gap of a reentrant circuit has both temporal (time during the cycle length that the circuit is excitable) and spatial (length of the circuit that is excitable at a given time) properties. We determined the temporal and spatial properties of the excitable gap in reentrant circuits caused by nonuniform anisotropy. Myocardial infarction was produced in canine hearts by ligation of the left anterior descending coronary artery. Four days later, reentrant circuits were mapped in the epicardial border zone of the infarcts with a multielectrode array during sustained ventricular tachycardia induced by programmed stimulation. During tachycardia, premature impulses were initiated by stimulation at sites around and in the reentrant circuits, and their conduction characteristics in the circuit were mapped. All circuits had a temporal excitable gap in at least part of the circuit, which allowed premature impulses to enter the circuit. Completely and partially excitable segments of the temporal gap were identified by measuring conduction velocity of the premature impulses; conduction was equal to the native reentrant wave front in completely excitable regions and slower than the reentrant wave front in partially excitable regions. In some circuits, a temporal gap existed throughout the circuit, permitting the entire circuit to be reset over a range of premature coupling intervals, although the size of the gap varied at different sites. In other circuits, the gap became so small at local sites that even though premature impulses could enter the circuit, the circuit could not be reset. Premature impulses could terminate reentry in circuits that could be reset or not. We also found a significant spatial gap, which was identified by determining the distance between the head of the circulating wave front, which could be located on the activation map, and its tail, which was the site most distal from the head as located by the site of entry of the premature wave front into the circuit. The spatial gap could also vary in different parts of the circuit. Therefore, nonuniform anisotropic reentrant circuits have both a temporal and spatial excitable gap with fully and partially excitable components that change in different parts of the circuit.  相似文献   

12.
13.
Electrophysiological properties of guinea pig ambiguus (AMB) neurons were studied in a brainstem slice preparation. During subthreshold depolarization AMB neurons displayed an early slow depolarization and a late outward rectification both of which were blocked by replacing Ca2+ with Co2+ in the extracellular solution. AMB neurons showed hyperpolarizing inward rectification which was blocked by extracellular Cs+ and is likely caused by the activation of Ih: In 58% (n = 49) of AMB neurons spike firing was restricted to the early phase of a long-lasting depolarizing current injection (phasic firing). The remaining AMB neurons showed repetitive firing throughout the depolarization (tonic firing). A Ca(2+)-mediated K+ current (IK(Ca)) caused an afterhyperpolarization that followed both single and repetitive spike firing. IK(Ca) also controlled the firing pattern in both types of firing, especially in the phasic firing. Norepinephrine (NE) blocked both the hyperpolarizing inward rectification and the Ca(2+)-dependent AHP. These effects of NE were antagonized by propranolol. It is proposed that the blockade of IK(Ca) and Ih contribute to the improvement of the 'signal-to-noise ratio' by NE in AMB neurons.  相似文献   

14.
OBJECTIVES: To describe the natural recovery of visuospatial neglect in stroke patients and the distribution of errors made on cancellation tests using a standardised neuropsychological test battery. METHOD: A prospective study of acute (< seven days) patients with right hemispheric stroke. Patients identified with visuospatial neglect were followed up for three months with monthly clinical and neuropsychological testing RESULTS: There were 66 patients with acute right hemispheric stroke assessed of whom 27 (40.9%) had evidence of visuospatial neglect. Patients with neglect, on admission, had a mean behavioural inattention test (BIT) score of 56.3, range 10-126 (normal>129). Three of the subtests identified errors being made in both the right and left hemispaces. During follow up, recovery occurred across both hemispaces, maximal in the right hemispace. Recovery from visuospatial neglect was associated with improvement in function as assessed by the Barthel score. At the end of the study period only six (31.5%) patients had persisting evidence of neglect. On admission the best predictor of recovery of visuospatial neglect was the line cancellation test (Spearman's rank correlation r=-0.4217, p=0.028). CONCLUSION: The demonstration of errors in both hemispaces has implications for the theory that neglect is a lateralised attentional problem and is important to recognise in planning the rehabilitation of stroke patients.  相似文献   

15.
The origin of medullary cells that form the cardiac vagal branch and the vagal branches in the lower thorax innervating the gastrointestinal (GI) tract was studied using horseradish peroxidase (HRP), a retrograde transport tracer in the cat. The distributions of parasympathetic postganglionic neurons of the heart were studied with acetylcholinesterase histochemistry. Intracardiac ganglionic neurons were found mainly in the connective tissue surrounding the base of the pulmonary arteries and in an area in and dorsal to the interatrial septum. Following injection of HRP into the subepicardum where most of the cardiac postganglionic neurons reside, 91% of the labelled neurons were found bilaterally distributed in the nucleus ambiguus (NA). A small population of labelled neurons was found in the dorsal motor nucleus of the vagus (DMV) and an intermediate zone (IZ) between the two nuclei. When HRP was injected into the left or right cardiopulmonary vagus branch, labelled neurons were found exclusively in the ipsilateral NA, DMV and IZ with a predominance in the NA. In the thorax, after they course around the heart, the left and right thoracic vagus nerves divides into a left and a right branch, respectively. The left branch of the left thoracic vagus joins the left branch of the right thoracic vagus to form the anterior vagus nerve at 3 cm above the diaphragm. The right branch of the right thoracic vagus nerve joins the right branch of the left thoracic vagus to form the posterior vagus nerve. After application of HRP into the right or the left branch of the left thoracic vagus, HRP labelled cells were found in the left DMV. Similarly, after application of HRP into the left or the right branch of the right thoracic vagus, labelled cells were found in the right DMV. On the other hand, when HRP was injected into the anterior vagus, labelled neurons were found bilaterally in the DMV. This suggests that all rostral branches of the thoracic vagus have their origin in the ipsilateral DMV, and intermixing occurs only at the caudal level near the diaphragm. Findings of the present experiments suggest that parasympathetic preganglionic neurons innervating the GI tract are located exclusively in the DMV while those of the heart are located mainly in the NA. Within the DMV, GI vagal neurons were found medially from the level 0-2.5 mm rostral to the obex. In contrast, cardiac vagal neurons were found in the lateral edge of the DMV at the level 0-1 mm rostral to the obex.  相似文献   

16.
Extracellular recording techniques were used to record the responses of medial nucleus cells and posterior lateral line nerve fibers in mottled sculpin, Cottus bairdi, and goldfish, Carassius auratus, to a 50-Hz dipole source (vibrating sphere). Responses were characterized in terms of (1) receptive fields that relate responsiveness (spike rate and phase-locking) to the location of the source along the length of the fish, (2) input-output functions that relate responsiveness to vibration amplitude for a fixed source location, and (3) peri-stimulus time histograms that relate responsiveness to time during a sustained period of vibration. Relative to posterior lateral line nerve fibers, medial nucleus cells in both species were similar in showing (1) lower spontaneous and evoked rates of spike activity, (2) greater degrees of adaptation, (3) greater heterogeneity in all response characteristics, and (4) evidence for inhibitory/excitatory interactions. Whereas receptive fields of nerve fibers in both species faithfully reflect both pressure gradient amplitudes (with rate changes) and directions (with phase-angle changes) in the stimulus field, receptive fields of medial nucleus were more difficult to relate to the stimulus field, Some, but not all, receptive fields could be modeled with excitatory center/inhibitory surround and inhibitory center/excitatory surround organizations.  相似文献   

17.
Recent physiological evidence indicates that vagal postganglionic control of left ventricular contractility is mediated by neurons found in a ventricular epicardial fat pad ganglion. In the dog this region has been referred to as the cranial medial ventricular (CMV) ganglion [J.L. Ardell, Structure and function of mammalian intrinsic cardiac neurons, in: J.A. Armour, J.L. Ardell (Eds.). Neurocardiology, Oxford Univ. Press, New York, 1994, pp. 95-114; B.X. Yuan, J.L. Ardell, D.A. Hopkins, A.M. Losier, J.A. Armour, Gross and microscopic anatomy of the canine intrinsic cardiac nervous system, Anat. Rec., 239 (1994) 75-87]. Since activation of the vagal neuronal input to the CMV ganglion reduces left ventricular contractility without influencing cardiac rate or AV conduction, this ganglion contains a functionally selective pool of negative inotropic parasympathetic postganglionic neurons. In the present report we have defined the light microscopic distribution of preganglionic negative inotropic neurons in the CNS which are retrogradely labeled from the CMV ganglion. Some tissues were also processed for the simultaneous immunocytochemical visualization of tyrosine hydroxylase (TH: a marker for catecholaminergic neurons) and examined with both light microscopic and electron microscopic methods. Histochemically visualized neurons were observed in a long slender column in the ventrolateral nucleus ambiguus (NA-VL). The greatest number of retrogradely labeled neurons were observed just rostral to the level of the area postrema. TH perikarya and dendrites were commonly observed interspersed with vagal motoneurons in the NA-VL. TH nerve terminals formed axo-dendritic synapses upon negative inotropic vagal motoneurons, however the origin of these terminals remains to be determined. We conclude that synaptic interactions exist which would permit the parasympathetic preganglionic vagal control of left ventricular contractility to be modulated monosynaptically by catecholaminergic afferents to the NA-VL.  相似文献   

18.
Calcium-dependent plateau potentials in rostral ambiguus neurons in the newborn mouse brain stem in vitro. J. Neurophysiol. 78: 2483-2492, 1997. The nucleus ambiguus contains vagal and glossopharyngeal motoneurons and preganglionic neurons involved in respiration, swallowing, vocalization, and control of heart beat. Here we show that the rostral compact formation's ambiguus neurons, which control the esophageal phase of swallowing, display calcium-dependent plateau potentials in response to tetanic orthodromic stimulation or current injection. Whole cell recordings were made from visualized neurons in the rostral nucleus ambiguus using a slice preparation from the newborn mouse. Biocytin-labeling revealed dendritic trees with pronounced rostrocaudal orientations confined to the nucleus ambiguus, a morphological profile matching that of vagal motoneurons projecting to the esophagus. Single-stimulus orthodromic activation, using an electrode placed in the dorsomedial slice near the nucleus tractus solitarius, evoked single excitatory postsynaptic potentials (EPSPs) or short trains of EPSPs (500 ms to 1 s). However, tetanic stimulation (5 pulses, 10 Hz) induced voltage-dependent afterdepolarizations or long-lasting plateau potentials (>1 min) with a constant firing pattern. Depolarizing or hyperpolarizing current pulses elicited voltage-dependent afterdepolarizations or plateau potentials lasting a few seconds to several minutes. Constant spike activity accompanied the long-lasting plateau potentials, which ended spontaneously or could be terminated by weak hyperpolarizing current pulses. Current-induced afterdepolarizations and plateau potentials were dependent on extracellular and intracellular Ca2+, as they were blocked completely by extracellular Co2+, Cd2+, or intracellular bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA). Orthodromically induced afterdepolarizations and plateau potentials were blocked by intracellular BAPTA. Afterdepolarizations and plateau potentials were completely blocked by substitution of extracellular Na+ with choline. Afterdepolarizations persisted in tetrodotoxin. We conclude that rostral ambiguus neurons have a Ca2+-activated inward current carried by Na+. Synaptic activation of this conductance may generate prolonged spike activity in these neurons during the esophageal phase of swallowing.  相似文献   

19.
The central nervous system interacts with the immune system to coordinate several components of the acute phase response, although the specific neuroanatomical pathways that mediate these responses are still uncharacterized. However, neurons in both the autonomic and endocrine components of the paraventricular hypothalamic nucleus (PVH) are characteristically activated in different models of immune stimulation. In the current study, we have used intravenous administration of lipopolysaccharide (LPS; 5 or 125 micrograms/kg) to induce the acute phase response. We subsequently coupled immunohistochemistry for Fos (as a marker of neuronal activation) with retrograde transport of the neuroanatomical tracer cholera toxin-b from the PVH. Several of the activated cell groups directly projected to the paraventricular nucleus, including the visceromotor (infralimbic) cortex, median preoptic nucleus, ventromedial preoptic area, bed nucleus of the stria terminalis, parabrachial nucleus, ventrolateral medulla, and nucleus of the solitary tract. These findings indicate that immune system stimulation activates cell groups from multiple nervous system levels that project to the paraventricular nucleus. We hypothesize that the activation of specific autonomic and endocrine elements of the PVH may be due to the activity of distinct afferents that converge on the PVH from multiple components of the central autonomic control system. Our results are consistent with the hypothesis that the PVH plays a key role in integrating diverse physiological cues into the varied manifestations that constitute the cerebral component of the acute phase response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号