首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为改变Al-Si合金中第二相的尺寸、形貌及分布,改善合金的电学和力学性能,选用稀土元素Er作为合金化元素,制备了Al-4Si、Al-4Si-0.2Er合金,探究了稀土Er及均匀化处理对挤压态Al-4Si、Al-4Si-0.2Er合金显微组织及电学、力学性能的影响。结果表明:稀土Er有利于促进固溶态Si的析出且形成新相ErSi2,增加了合金中第二相数量,弥散强化效果明显,提高了合金的力学性能,且导电率保持稳定。均匀化处理工艺为540 ℃×1 h炉冷的Al-4Si-0.2Er合金综合性能较强,均匀化处理促进了第二相的析出,同时减小了第二相尺寸,使其以颗粒状弥散分布,Al-4Si-0.2Er合金的导电率由挤压态的51.61%IACS提高至56.44%IACS,提高了9.4%,炉冷过程导致了合金的力学性能略有下降,抗拉强度为87.80 MPa,伸长率为35.9%,硬度为36.00 HV0.3。  相似文献   

2.
Microalloying is an effective method to improve the comprehensive properties of copper alloys.The effects of magnesium on the microstructure,mechanical properties and anti-stress relaxation properties of CuNiSi alloys have been investigated.Results demonstrated that magnesium plays significant roles in refining the dendritic microstructure of the as-cast ingot,accelerating the precipitation decomposition,improving the mechanical properties and increasing the anti-stress relaxation properties.The incremental strength increase is due to the Orowan strengthening from the nanoscale Ni_2 Si and Ni_3 Al precipitates.As compared with the Cu-6.0 Ni-1.0 Si-0.5 Al(wt%) alloy,the ultimate tensile strength of the designed Cu-6.0 Ni-1.0 Si-0.5 Al-0.15 Mg(wt%) alloy increases from 983.9 to 1095.7 MPa,and the electrical conductivity decreases from 27.1 to 26.6% IACS,respectively.The stress relaxation rates of the designed Cu-6.0 Ni-1.0 Si-0.5 Al-0.15 Mg alloy are 4.05%at 25℃,6.62% at 100℃and 9.74% at 200℃after having been loaded for 100 h,respectively.Magnesium significantly promotes nucleation during precipitation and maintains small precipitate size.  相似文献   

3.
The refinement potential of Al-3.5 Fe Nb-1.5 C master alloy on pure aluminium and Al-9.8 Si-3.4 Cu alloy has been investigated. Different amounts of Al-3.5 Fe Nb-1.5 C master alloy were added to estimate the optimal addition level. It was found that the addition of Al-3.5 Fe Nb-1.5 C grain refiner can promote significantly the refinement of grains in the pure aluminium, particularly at 0.1 wt.%, with the mean primary aluminium α-grain size reducing to 187±3 μm from about 1-3 mm. Similarly, the microstructural study of the Al-9.8 Si-3.4 Cu alloy die casting at different weight percentages(viz. 0.0 wt.%, 0.1 wt.% and 1.0 wt.%) of Al-3.5 Fe Nb-1.5 C master alloy shows that the Al-3.5 Fe Nb-1.5 C master alloy as a grain refiner is also acceptable for Al-Si cast alloys when the silicon content is more than 4 wt.%. As a result of inoculation with Al-3.5 Fe Nb-1.5 C master alloy, the average grain size of α-Al is reduced to 22±3 μm from about 71±3 μm and grain refining efficiency is not characterized by any visible poisoning effect, which is the major limitation in the grain refinement of Al-Si cast alloys by applying Al-Ti-B ternary master alloys. Mechanical properties such as ultimate tensile strength and yield strength are significantly improved by 9.6% and 9.7%, respectively.  相似文献   

4.
研究了Al-x Sc(x=0、0.10%、0.45%、0.70%)合金在挤压变形、拉拔变形和热处理过程中的力学性能和导电性能的变化。结果表明,铸态Al-Sc二元合金的强度都随Sc含量的增加而增加,而电导率逐渐降低。挤压变形后,Al-Sc合金的晶粒均有所细化,屈服和抗拉强度大幅提升,塑性略有下降;拉拔变形后,加工硬化使各Al-Sc合金的强度进一步提高,伸长率大幅降至1%左右;经过400℃保温2 min+300℃保温150 min的热处理后,Al-Sc合金的伸长率大幅提升,纯铝和Al-0.1%Sc合金的强度降低,然而添加0.45%和0.70%Sc的合金强度却有所升高,这主要是由于热处理后含Sc第二相析出导致的。两种变形过程对Al-Sc合金电导率的影响很小,热处理可通过分解铝钪固溶体大幅提高Al-Sc合金的电导率。最终制备的Al-0.45%Sc合金屈服强度,伸长率和电导率分别为210 MPa,7.2%,34.8×10^6S/m,兼具良好的力学性能和导电性能。  相似文献   

5.
The effects of Fe addition and initial powder size distribution on mechanical properties of Al-20Si-3Cu-lMg alloy, prepared by gas atomization and followed by hot consolidation, were studied by using optical microscopy, transmission electron microscopy, X-ray diffractometry, tensile and wear test. The Al-20Si-xFe-3Cu-lMg (x=0, 5) alloys showed homogeneous and refined microstructure. Addition of Cu and Mg to Al-20Si alloy showed increased tensile property due to precipitation hardening. Addition of Fe to Al-20Si-3Cu-lMg increased tensile strength further due to the formation of spherical Al-Si-Fe compound during hot consolidation and phase transformed from the metastable phase. Alloy bars prepared from powder with wide-size distribution showed low tensile strength and wear resistance.  相似文献   

6.
Based on the 3 factors and 3 levels orthogonal experiment method, compositional effects of Mg, Si, and Ti addition on the microstructures, tensile properties, and fracture behaviors of the high-pressure die-casting Al-x Mg-y Si-z Ti alloys have been investigated. The analysis of variance shows that both Mg and Si apparently infl uence the tensile properties of the alloys, while Ti does not. The tensile mechanical properties are comprehensively infl uenced by the amount of eutectic phase(α-Al + Mg_2Si), the average grain size, and the content of Mg dissolved into α-Al matrix. The optimized alloy is Al-7.49 Mg-3.08 Si-0.01 Ti(wt%), which exhibits tensile yield strength of 219 MPa, ultimate tensile strength of 401 MPa, and elongation of 10.5%. Furthermore, contour maps, showing the relationship among compositions, microstructure characteristics, and the tensile properties are constructed, which provide guidelines for developing high strength and toughness Al–Mg–Si–Ti alloys for high-pressure die-casting.  相似文献   

7.
JOM - The work is devoted to studying the effect of a Sn trace addition on the precipitation hardening after aging of the eutectic Al-7 wt.% Si-7 wt.% Cu alloy. The addition of Sn and Si has a...  相似文献   

8.
采用重熔稀释法制备了Al-7Si-0.5Mg-0.1Er和0.5TiB2/Al-7Si-0.5Mg-0.1Er合金,研究了TiB2颗粒增强Al-Si-Mg-Er复合材料的组织性能。结果表明,复合材料铸态组织主要由α-Al基体、共晶Si相和TiB2颗粒组成。TiB2粒子的加入使Al-7Si-0.5Mg-0.1Er合金二次枝晶间距减小了7.1 μm。抗拉强度达到217.53 MPa,较Al-7Si-0.5Mg-0.1Er合金提升了12.1 %。TiB2/Al-Si-Mg-Er复合材料的最优T6热处理工艺为530 ℃×12 h固溶+160 ℃×7 h时效,经该工艺处理后,TiB2/Al-Si-Mg-Er复合材料抗拉强度达到319.49 MPa,相比热处理前提高了46.9%,相比Al-7Si-0.5Mg-0.1Er合金提高了5.9%;屈服强度达到266.75 MPa,相比热处理前提高了106.4%,相比Al-7Si-0.5Mg-0.1Er合金提高了14.9%。复合材料抗拉强度的提升主要源于TiB2颗粒加入后产生的晶粒细化、变质和热处理强化。  相似文献   

9.
《中国铸造》2012,(1):43-47
To improve the strength,hardness and heat resistance of Mg-Zn based alloys,the effects of Cu addition on the as-cast microstructure and mechanical properties of Mg-10Zn-5Al-0.1Sb high zinc magnesium alloy were investigated by means of Brinell hardness measurement,scanning electron microscopy (SEM),energy dispersive spectroscopy (EDS),XRD and tensile tests at room and elevated temperatures.The results show that the microstructure of as-cast Mg-10Zn-5Al-0.1Sb alloy is composed of α-Mg,t-Mg32(Al,Zn)49,φ-Al2Mg5Zn2 and Mg3Sb2 phases.The morphologies of these phases in the Cu-containing alloys change from semi-continuous long strip to black herringbone as well as particle-like shapes with increasing Cu content.When the addition of Cu is over 1.0wt.%,the formation of a new thermally-stable Mg2Cu phase can be observed.The Brinell hardness,room temperature and elevated temperature strengths firstly increase and then decrease as the Cu content increases.Among the Cu-containing alloys,the alloy with the addition of 2.0wt.% Cu exhibits the optimum mechanical properties.Its hardness and strengths at room and elevated temperatures are 79.35 HB,190MPa and 160MPa,which are increased by 9.65%,21.1% and 14.3%,respectively compared with those of the Cu-free one.After T6 heat treatment,the strengths at room and elevated temperatures are improved by 20% and 10%,respectively compared with those of the as-cast alloy.This research results provide a new way for strengthening of magnesium alloys at room and elevated temperatures,and a method of producing thermally-stable Mg-10Zn-5Al based high zinc magnesium alloys.  相似文献   

10.
Magnesium (Mg) and its alloys have broad application prospects in the fields such as biomedical materials and automobile manufacturing. A micro-alloyed Mg-2.0Nd-0.2Sr (wt.%) magnesium alloy is designed and obtained through semicontinuous casting. The evolution of microstructures and tensile properties are investigated with different heat treatments and extrusion treatments. The grain sizes decrease significantly after extrusion, thus changing the fracture mode during the tensile testing process. The ultimate tensile strength (UTS), yield strength (YS) and elongation (EL) of the properly processed extrusion alloy (referred to as MNS-E2) reach to 247 MPa, 228 MPa and 24%, respectively. The dramatical improvement of mechanical properties results from the refined grains and interactions between dislocations and precipitates. Some nanoparticle bands blocking the slippage and movement of dislocations are also found in the MNS-E2 alloy. The above causes combined result in an integrated effect of grain boundary strengthening, dislocation strengthening, precipitation strengthening and nanoparticle band strengthening. The contribution of strengthening mechanisms of MNS-E2 alloy consists of grain boundary with around 96 MPa, dislocations with around 3.4 MPa, precipitation strengthening with around 45 MPa and the nanoparticle band with around 18 MPa, respectively.  相似文献   

11.
将Al-6.15Zn-1.41Mg-1.45Cu合金在477℃固溶1 h后,基于脉冲磁场对Al-6.15Zn-1.41Mg-1.45Cu合金进行双级时效处理,通过改变时效时间,且与常规双级时效组织和性能对比分析,研究脉冲磁场对Al-6.15Zn-1.41Mg-1.45Cu合金时效过程中析出相和力学性能的影响,并结合动力学分析Al-6.15Zn-1.41Mg-1.45Cu合金在脉冲磁场双级时效过程中析出相加速析出的扩散机制。采用SEM观察Al-6.15Zn-1.41Mg-1.45Cu合金析出相和拉伸断口形貌,并进行力学性能测试。结果表明,脉冲磁场在Al-6.15Zn-1.41Mg-1.45Cu合金经时效过程中,提高扩散系数,提高析出相的形核率,使得时效后,基体中出现弥散细小的析出相。经脉冲磁场双级时效处理(121℃×90 min+177℃×60 min)后,抗拉强度为495.43 MPa,硬度为156.3 HV5,相比于常规的双级时效处理,抗拉强度提升20.83%,硬度提升17.89%,时效保温时间缩短87.5%。  相似文献   

12.
通过电子拉伸试验机、扫描电镜、透射电镜等研究了5种不同合金成分对高强Al-Mg-Si合金组织和性能的影响。结果发现,5种 Al-Mg-Si合金微观组织、力学性能以及导电性能都强烈依赖于合金中Mg和Si含量。随着Mg、Si含量的增加,合金的抗拉强度增加,同时导电率呈现下降的趋势。Al-0.7Mg-0.5Si和Al-0.6Mg-0.6Si相比,虽然两种合金的Mg、Si原子总量相当,但是由于Mg/Si比不同,导致二者微观组织明显不同,性能存在明显的差异。Ce微合金化使Al-0.7Mg-0.6Si-0.2Ce合金的力学性能和电学性能获得良好的匹配,175 ℃时效4 h的抗拉强度达到325 MPa,同时导电率达到56.2%IACS。  相似文献   

13.

A systematic study on how Cu content affects the microstructure and mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys during solution treatment and ageing heat treatment was conducted. The swirled enthalpy equilibrium device (SEED) was adopted to prepare the semi-solid slurry of Al-6Zn-2Mg-xCu alloys. The microstructure development and mechanical properties were studied using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), as well as hardness and tensile testing. The grain boundary and shape factor were calculated using image processing software (Image-Pro Plus 6.0). Results show that the alloys are composed of typical globular primary α-Al grains, eutectic phases, and smaller secondary α-Al grains. After solution and ageing heat treatment, the eutectic phases are dissolved into Al matrix when the Cu content is lower than 1.5wt.%, while some eutectic phases transform into Al2CuMg (S) phases and remain at grain boundaries when Cu content reaches 2wt.%. T6 heat treatment significantly enhances the mechanical properties of rheo-diecasting Al-6Zn-2Mg-xCu alloys. When Cu concentration is 0.5wt.%–1.5wt.%, the ultimate tensile strength, yield strength and elongation of T6 treated alloys rise to around 500 MPa, 420 MPa, and 18%, respectively.

  相似文献   

14.
The wear resistance of six kinds of the electrolytic low-titanium eutectic Al-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, Al-50%Cu and Al-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic Al-Si piston alloys under lubricating condition is abrasive wear.  相似文献   

15.
The wear resistance of six kinds of the electrolytic low-titanium eutectic AI-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, AI-50%Cu and AI-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic AI-Si piston alloys under lubricating condition is abrasive wear.  相似文献   

16.
喷射成形Al—Zn—Mg—Cu系高强铝合金的组织与性能   总被引:30,自引:4,他引:26  
利用喷射成形工艺制备了Al-Zn-Mg-Cu系高强铝合金材料,研究了热挤压工艺与热处理工艺对材料微观组织与力学性能的影响,在峰时效的情况下材料表现出了高的力学性能指标,抗拉强度达到754MPa,屈服强度达到722MPa,断裂延伸率达到8%,与采用传统铸造变形工艺制备的同类合金相比(σb≥610MPa,σ0.2≥580MPa,δ≥4%),性能有了明显的提高。合金性能的提高与其基体中呈弥散分布的Mg7Zn3相有很大的关系,合金的主要强化机制是沉淀强化。  相似文献   

17.
Al-8.4Si-20Cu-10Ge and mixed rare-earth elements (Re) containing Al-8.4Si-20Cu-10Ge-0.1Re filler metals were used for brazing of 6061 aluminum alloy/Ti-6Al-4V. The addition of 20 wt.% copper and 10 wt.% germanium into the Al-12Si filler metal lowered the solidus temperature from 586 °C to 489 °C and the liquidus temperature from 592 °C to 513 °C. The addition of 0.1 wt.% rare-earth elements into Al-8.4Si-20Cu-10Ge alloy caused remarkable Al-rich phase refinement and transformed the needle-like Al2Cu intermetallic compounds into block-like shapes. Shear strengths of the 6061 aluminum alloy/Ti-6Al-4V joints with the two brazing filler metals, Al-8.4Si-20Cu-10Ge and Al-8.4Si-20Cu-10Ge-0.1Re, varied insignificantly with brazing periods of 10-60 min. The average shear strength of the 6061 aluminum alloy/Ti-6Al-4V joints brazed with Al-8.4Si-20Cu-10Ge at 530 °C was about 20 MPa. Rare-earth elements appeared to improve the reaction of the Al-8.4Si-20Cu-10Ge filler metal with Ti-6Al-4V. The joint shear strength of the 6061 aluminum alloy/Ti-6Al-4V with Al-8.4Si-20Cu-10Ge-0.1Re reached about 51 MPa.  相似文献   

18.

The effect of La addition (0, 0.1, 0.2, 0.4, wt.%) on the microstructure, tensile properties and fracture behavior of Al-7Si alloy was investigated systematically. It is found that the La appears in the Al-7Si alloy in the form of Al4La and Al2Si2La phases. La addition can refine the secondary dendrite arm spacing (SDAS) and eutectic Si particles, which are decreased by 7.9% and 7%, respectively, with the optimal La content of 0.1wt.%. Because when 0.1wt.% La is added, a relatively higher nucleation undercooling of 37.47 °C is observed. Higher undercooling degree suggests that nucleation is accelerated and subsequent growth is restrained. After T6 heat treatment, compared with the without La, the ultimate tensile strength of the alloy with 0.1wt.% La is enhanced by 5.2% from 333 MPa to 350.2 MPa and the elongation increases by 73% from 7.37% to 12.75%, correspondingly. The fracture mode evolves from the ductile-brittle mixed fracture to ductile fracture mode. However, when La element content reaches a certain value of 0.4wt.%, serious segregation takes place during the solidification process. The formed brittle phases deteriorate the tensile properties of the alloy and the fracture mode of Al-7Si-0.2/0.4 La changes to mixed ductile-brittle fracture mode.

  相似文献   

19.
通过研制Al 2 .5Li,Al 2 5Li 0 2Zr,Al 2 5Li 1 2Mg 0 2Zr,Al 2 5Li 1 6Cu 1 2Mg 0 2Zr4种成分的快速凝固铝锂合金 ,研究了逐步添加合金元素Zr,Mg ,Cu对合金力学性能的影响。结果表明 :在快速凝固铝锂合金中逐步加入少量合金元素Zr,Mg ,Cu后 ,合金强度逐步增加 ,而延伸率无明显变化 ,这有助于强化合金基体和阻碍合金基体的剪切型断裂 ,有助于改善合金的综合力学性能 ,其中Al 2 5Li 1 6Cu 1 2Mg 0 2Zr合金综合力学性能最优 ,其密度、强度、塑性等都全面达到了国家高技术项目的技术指标。  相似文献   

20.
在重力铸造条件下制备了不同Cu含量(4%~6%,质量分数,下同)Al-Cu-Mg-Sc合金,采用500 ℃×4 h+520 ℃×6 h的双级固溶,水冷后进行175 ℃×5 h时效。通过维氏硬度测试、室温拉伸性能测试试验、扫描电镜分析(SEM)等手段,研究了不同Cu含量对试验合金显微组织和力学性能的影响,进而优化Al-Cu-Mg-Sc铝合金成分。结果表明,经热处理后,随Cu含量从4.26%提高至5.58%,Al2Cu析出相含量持续提高,热处理后合金屈服强度从191 MPa提升至216 MPa,抗拉强度从323 MPa提升至355 MPa,伸长率维持在13%附近。然而,当Cu含量较高时(6.13%),微观组织中Al2Cu相体积分数较高,固溶后进入基体的Al2Cu相数目有限,有大量Al2Cu相残留在晶界处,经过时效处理后,合金的强化效果不能随Cu含量的增加而继续提升。因此整体上,随Cu含量提高,时效态高Cu含量合金的硬度和抗拉强度先增加随后趋于平稳,断后伸长率呈现先增加后降低的规律。Cu含量为5.58%的铸造Al-Cu-Mg-Sc铝合金时效后获得最佳综合性能,其硬度为117 HV,抗拉强度和屈服强度分别为355 MPa、216 MPa,断后伸长率为13.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号