首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
通过拉伸测试和显微分析方法研究搅拌摩擦焊Al-5.50Mg-0.45Mn和Al-5.50Mg-0.45Mn-0.25Sc-0.10Zr(质量分数,%)合金的显微组织和力学性能。结果表明,Al-Mg-Mn接头的屈服强度、抗拉强度和伸长率分别为(191±3) MPa、(315±1) MPa和(4.8±1.9)%,Al-Mg-Mn-Sc-Zr接头的分别为(288±5) MPa、(391±2) MPa和(3.4±1.0)%。相比Al-Mg-Mn接头,Al-Mg-Mn-Sc-Zr接头晶粒更细小、平均取向差角更低、小角度晶界百分数更高。两种接头的断裂位置均位于焊核区(WNZ),在该“最薄弱微区”内,Al3(Sc1-xZrx)纳米粒子的平均尺寸为(9.92±2.69) nm,可提供有效奥罗万和晶界强化,使Al-Mg-Mn接头的屈服强度提高97 MPa。  相似文献   

2.
利用超声化学熔体原位反应技术合成颗粒增强(Al3Zr ZrB2)/A356复合材料,通过SEM原位拉伸实验及其断裂表面研究分析复合材料的断裂行为。结果表明,复合材料的抗拉强度、屈服强度和伸长率分别达到403.61MPa、343.98MPa和8.9%,较未施加超声作用的复合材料分别提高16.09%、12.9%和32.83%;复合材料的室温拉伸断口SEM形貌表现出明显的韧窝断裂特征,为塑性断裂。裂纹的萌生机制主要有基体在滑移过程中的位错作用机制、内生Al3Zr和ZrB2颗粒脱落或破碎形成的空穴成核机制和基体缺陷诱发机制;由于内生增强颗粒微观分布上的不均匀性,当主裂纹扩展前方遇到颗粒密集区时,其扩展方向偏向颗粒贫化区,绕过颗粒密集区,并沿颗粒富集区与贫化区的界面向前扩展、延伸,形成宏观裂纹。  相似文献   

3.
This research investigated the combined effects of addition of Bi and Sb elements on the microstructure, thermal properties, ultimate tensile strength, ductility, and hardness of Sn-0.7Ag-0.5Cu (SAC0705) solder alloys. The results indicated that the addition of Bi and Sb significantly reduced the undercooling of solders, refined the β-Sn phase and extended the eutectic areas of the solders. Moreover, the formation of SbSn and Bi phases in the solder matrix affected the mechanical properties of the solder. With the addition of 3 wt.% Bi and 3 wt.% Sb, the ultimate tensile strength and hardness of the SAC0705 base alloy increased from 31.26 MPa and 15.07 HV to 63.15 MPa and 23.68 HV, respectively. Ductility decreased due to grain boundary strengthening, solid solution strengthening, and precipitation strengthening effects, and the change in the fracture mechanism of the solder alloys.  相似文献   

4.
The effects of different Zr additions(0.05wt.%-0.5wt.%)on the structure and tensile properties of an Al-4.5Cu-0.3Mg-0.05Ti(wt.%)alloy solidified under a high cooling rate(18℃·s-1),in as-cast and T6 heat-treated conditions were studied.The as-cast structure of the alloy consists of equiaxed grains ofα-Al with an average size of 64μm which is unaffected by the Zr additions,indicating the ineffectiveness of Zr in the grain refinement of the alloy.Scanning electron microscopy,along with X-ray diffraction analysis revealed the presence of elongatedθ-Al2Cu at the grain boundaries;in addition,coarse Al3Zr particles exist in the intergranular regions of the 0.5wt.%Zr-containing alloy.After the T6 heat treatment,the elongatedθparticles were fragmented;however,the coarse Al3Zr particles remained unchanged in the microstructure.Also,the formation of fineβ’-Al3Zr andθ’’-Al3Cu/θ’-Al2Cu phases during T6 heat treatment was revealed by transmission electron microscopy.The results of the tensile tests showed that the Zr additions increase the strength of the alloy in both as-cast and T6 heat-treated conditions,but reduce its elongation,especially with 0.5wt.%Zr addition.The 0.3wt.%Zr-added alloy in the T6 heat-treated condition has the highest quality index value(249 MPa).Fractography of the fracture surfaces of the alloys revealed ductile fracture mode including dimples and cracked intermetallic phases in both conditions.  相似文献   

5.
研究了不同热变形条件下用快餐Al—Fe—V—Si合金粉挤压成形样品的拉伸断裂行为.结果表明,在沿轧制方向拉伸的试样中,与板面平行的颗粒界面(LT界面)处形成的微裂纹不影响主裂纹的扩展,沿与板材纵截面平行的颗粒界面(LS界面)的开裂可能导致试样反常断裂,沿与板材横截面平行的颗粒界面(TS界面)则易成为主裂纹的低能扩展路径,使试样沿颗粒断裂.热轧变形使粉末LS,TS界面的强度提高快于LT界面,导致热轧变形至一定程度(30%变形量)时试样的断裂方式改变.断裂强度与延伸率的不同变化规律与断裂方式的改变及其后的形变硬化有关.  相似文献   

6.
采用金属型铸造方法制备了Mg-6Zn-xCu(x=1%、3%、5%)镁合金,并通过光学显微镜、X射线衍射和扫描电镜及力学性能测试等手段研究了Cu含量对合金的显微组织和力学性能的影响。结果表明:Cu在合金中主要以CuMgZn相存在,且随着Cu量的增加,其数量增加;在凝固过程中,CuMgZn富集在已结晶的α-Mg表面,阻碍了其长大,从而细化了晶粒,但过量的CuMgZn偏聚晶界偏聚,引起局部的应力集中,对合金的力学性能产生负面影响;随着Cu含量的增加,合金的力学性能逐渐降低,加入1%Cu时,合金的抗拉强度和伸长率达到最大值,分别为208MPa和13.5%;随着Cu含量的增加,拉伸断口由准解理断裂向解理断裂和沿晶断裂转变。  相似文献   

7.
采用快速凝固方法制备了Cu-5Ag-0.5Zr及Cu-5Ag-0.5Zr-0.4Cr-0.35Nb(wt%)合金粉末,采用热等静压将粉末压制成坯料,随后进行热锻、冷轧处理。测试了合金在室温及高温(500 ℃)下的力学性能,并分析了合金的显微组织及断口形貌。结果表明,冷轧态合金具有更优异的室温拉伸性能,冷轧态Cu-Ag-Zr合金抗拉强度为739.3 MPa,伸长率7.1%,这与铜基体中密集的Cu4AgZr颗粒及纳米级Ag颗粒有关。除Cu4AgZr颗粒及Ag颗粒外,Cr、Nb元素的添加还生成高温稳定的Cr2Nb颗粒,同时提高了合金的室温和500 ℃拉伸强度。冷轧态Cu-Ag-Zr-Cr-Nb合金的室温极限抗拉强度和伸长率分别为799.1 MPa与5.3%。因为热锻态合金晶粒尺寸粗大,Ag颗粒尺寸细小,相比冷轧态合金拥有更好的抗高温弱化性能。热锻态Cu-Ag-Zr-Cr-Nb和Cu-Ag-Zr合金的500 ℃抗拉强度分别为186.8和129.2 MPa,而冷轧态Cu-Ag-Zr-Cr-Nb和Cu-Ag-Zr合金在500 ℃抗拉强度分别仅为113.1和95.4 MPa。  相似文献   

8.
采用光学显微镜(OM)、扫描电镜(SEM)和力学试验机等测试手段,对Φ0.5 mm的加工态Ir丝和IrRh40合金丝的金相组织、断口形貌和力学性能进行了分析。结果表明:Rh能明显细化Ir合金的显微组织,IrRh40合金比纯Ir具有更细的晶粒,但Rh并不能提高Ir合金的强度和延伸率,Ir丝的平均抗拉强度为2103 MPa,IrRh40合金丝的平均抗拉强度为1765 MPa,2种合金的延伸率为8%~10%;Ir丝和IrRh40合金丝的拉伸断裂方式主要为穿晶断裂,在断裂之前存在明显的"颈缩"现象。  相似文献   

9.
研究多循环低温交变(液氮浸泡处理)和拉伸温度对挤压态Mg10Gd3Y0.5Zr镁合金的微观组织、力学性能以及断裂机制的影响。结果表明,Mg10Gd3Y0.5Zr合金经10d液氮浸泡或10个周期高低温交变循环后,合金室温力学性能基本不变;而经过20个周期高低温循环后,合金的室温抗拉强度由398MPa升高到417MPa。在196°C下拉伸时,挤压态Mg10Gd3Y0.5Zr镁合金的屈服强度和抗拉强度均大幅度提高,分别为349MPa和506MPa,分别增长了18%和27%。合金室温断裂机制为穿晶解理断裂,而低温条件下为韧性断裂和解理断裂并存的混合断裂机制。  相似文献   

10.
In order to obtain the Al wires with good mechanical properties and high electrical conductivities, conductive wires of Al–0.16Zr, Al–0.16Sc, Al–0.12Sc–0.04Zr (mass fraction, %) and pure Al (99.996%) were produced with the diameter of 9.5 mm by continuous rheo-extrusion technology, and the extruded materials were heat treated and analyzed. The results show that the separate additions of 0.16% Sc and 0.16% Zr to pure Al improve the ultimate tensile strength but reduce the electrical conductivity, and the similar trend is found in the Al–0.12Sc–0.04Zr alloy. After the subsequent heat treatment, the wire with the optimum comprehensive properties is Al–0.12Sc–0.04Zr alloy, of which the ultimate tensile strength and electrical conductivity reach 160 MPa and 64.03% (IACS), respectively.  相似文献   

11.
研究了不同热变形条件下用快凝Al-Fe-V-Si合金粉挤压成形样品的拉伸断裂行为。结果表明,在沿轧制方向拉伸的试样中,与板面平行的颗粒界面处形成的微裂纹不影响主裂纹的扩展,沿与板材纵截面平行的颗粒界面的开裂可能导致试样反常断裂,沿与板材横截面平行的颗粒界面则易成为主裂纹的低能扩展路径,使试样沿颗粒断裂。  相似文献   

12.
A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.  相似文献   

13.
设计了新型Mg-6Gd-3Y-2Zn-0.5Zr镁合金,并用光学显微镜、扫描电镜及拉伸试验机对合金铸态、均匀化态及挤压态的显微组织特征和力学性能进行了研究。结果表明,铸态Mg-6Gd-3Y-2Zn-0.5Zr合金组织主要由α-Mg基体和沿晶界分布的块状长周期堆垛有序结构相组成,均匀化处理(450℃×16h)促使细小层片状的长周期堆垛有序结构相由晶界向晶内生长。挤压态Mg-6Gd-3Y-2Zn-0.5Zr合金在200℃下时效处理,无明显时效硬化现象,但挤压态合金具有优良的强韧性能,室温抗拉强度、屈服强度和伸长率分别为335MPa、276MPa和17%。  相似文献   

14.
近全层组织γ-TiAl基合金的室温拉伸断裂机理   总被引:5,自引:0,他引:5  
通过对直缺口近全层组织的扫描电镜原位拉伸实验以及相应的断裂表面观察,结合有限元计算了TiAl基合金近全层组织拉伸的断裂机理。研究表明:许多裂纹在塑性变形前沿着层间起裂和扩展,断裂过程的驱动力是拉应力。在直缺口试样中,许多裂纹直接起裂于缺口根部,并且沿着层间扩展。随着拉应力的增加,主裂纹和新裂纹也可以通过障碍晶粒的穿层解理断裂来连接。通过有限元计算得沿层断裂强度大约为50MPa,穿层断裂强度大约为120MPa。  相似文献   

15.
The microstructure distribution, tensile anisotropy and fracture behaviors in the dissimilar friction stir welded joint of AM60/AZ31 alloys were investigated. Experimental results showed that a significant grain refinement and an orientation fluctuation occurred in the weld. The grain size of AZ31 side in joint was obviously smaller than that of AM60 side. There was a higher percentage of low angle grain boundaries (LAGBs) and a lower degree of recrystallization in AZ31 side compared with those in AM60 side, especially for the thermo-mechanically affected zone in AZ31 side. The discrepancies of grain size distribution, recrystallization behavior and LAGBs in joint depended on the different initial state of two metals and the inhomogeneous temperature distribution in joint. In addition, the (0001) basal plane in weld was roughly parallel to the surface of the pin, showing the symmetrically distributed texture characteristics. The joint showed an obvious tensile anisotropy due to the special texture distribution. The comprehensive tensile properties of joint along the three directions decreased in the order: welding direction, 45° direction and transverse direction. The maximum ultimate tensile strength, yield strength and elongation of the joint were 242 MPa, 116 MPa and 21.2%, respectively. The fluctuations of grain size and texture in joint affected the fracture behavior of samples in the three directions.  相似文献   

16.
The microstructural evolution and mechanical properties of Mg-5Y-5Gd-xNd-0.5Zr magnesium alloys at different states were studied.The results reveal that island compounds at the grain boundaries of the as-cast alloys mainly were Mg24Y5,Mg41Nd5,and Mg5Gd phases.After homogenization at 808 K for 24 h,the distribution of the island compounds became discrete and Mg5Gd phases mostly decomposed and dissolved.With hot extrusion,the grain size was refined to about 20 μm on average,and both the strength and elongatio...  相似文献   

17.
The effects of trace Ag element on the precipitation behaviors and mechanical properties of the Mg−7.5Gd− 1.5Y−0.4Zr (wt.%) alloy by means of tensile test, X-ray diffractometry, scanning electron microscopy, electron backscattered diffractometry, and scanning transmission electron microscopy. There is an unusual texture (〈0001〉//extrusion direction) in the extruded Mg−Gd−Y−Zr alloys containing 0.5 wt.% Ag. During the aging periods at 225 °C, the addition of the trace Ag does not form new precipitates, just accelerates aging kinetics, and refines β′ precipitates, thereby increasing the number density of the β′ precipitates by Ag-clusters. Moreover, the Mg−Gd−Y−Zr alloy containing 0.5 wt.% Ag shows the most excellent synergy of strength and plasticity (408 MPa of ultimate tensile strength, 265 MPa of yield strength, and 12.9% of elongation to failure) after peak-aging.  相似文献   

18.
采用金相分析、SEM、硬度试验和拉伸试验等方法分析和测试砂型铸造 Mg-10Gd-3Y-0.5Zr 镁合金在T6态(固溶后空冷然后时效)下的显微组织和室温力学性能,讨论该合金的断裂机理。结果表明,砂铸Mg-10Gd-3Y-0.5Zr合金在225℃和250℃时效下的最优T6热处理工艺分别为(525℃,12 h+225℃,14 h)和(525℃,12 h+250℃,12 h)。峰时效下T6态Mg-10Gd-3Y-0.5Zr合金主要由α-Mg+γ+β′相组成,2种峰时效热处理工艺下合金的抗拉强度、屈服强度和伸长率分别为339.9 MPa、251.6 MPa、1.5%及359.6 MPa、247.3 MPa、2.7%。在不同热处理工艺下Mg-10Gd-3Y-0.5Zr合金断裂的类型不同,峰时效态合金的断裂方式为穿晶准解理断裂。  相似文献   

19.
An amorphous Ti-37.5Zr-15Cu-15Ni (wt.%) ribbon fabricated by vacuum arc remelting and rapid solidification was used as filler metal to vacuum braze TiAl alloy (Ti-45Al-2Mn-2Nb-1B (at.%)). The effects of brazing temperature and time on the microstructure and strength of the joints were investigated in details. The typical brazed joint major consisted of three zones and the brazed joints mainly consisted of α2-Ti3Al phase, α-Ti phase and (Ti, Zr)2(Cu, Ni) phase. When the brazing temperature varied from 910 °C to 1010 °C for 30 min, the tensile strength of the joint first increased and then decreased. With increasing the brazing time, the tensile strength of the joint increased. The maximum room temperature tensile strength was 468 MPa when the specimen was brazed at 930 °C for 60 min. All the fracture surfaces assumed typical brittle cleavage fracture characteristic. The fracture path varied with the brazing parameter and cracks preferred to initiate at (Ti, Zr)2(Cu, Ni) phase and propagation path were mainly determined by the content and distribution of α-Ti phase and (Ti, Zr)2(Cu, Ni) phase.  相似文献   

20.
Single crystal 321 stainless steel stress corrosion cracking was studied in a 42 wt.% MgCl2 solution. Cracks propagated macroscopically in the maximum tensile stress plane regardless of the notch orientation with respect to the applied tensile load direction. Some stress corrosion cracks nucleated discontinuously at the intersection of the two slip bands. Most cracks, however, were not related to the slip bands. Cleavage-like fracture was observed, and the river-markings exhibited microshear facets along the {1 1 1} plane. Interaction between the main crack and the discontinuous microcracks increased the calculated stress intensity factor by 17 times and promoted crack coalescence, resulting in mechanical fracture of the ligaments between the cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号