首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
在缸内直喷火花点火发动机上开展了天然气掺混0%-18%氢气的混合燃料不同点火时刻下的试验研究。结果表明:对于给定的喷射时刻和喷射持续期,点火时刻对发动机性能、燃烧和排放有较大影响,喷射结束时刻与点火时刻的间隔对直喷天然气发动机极为重要,喷射结束时刻与点火时刻的间隔缩短时,混合气分层程度高,燃烧速率快,热效率高。最大放热率等燃烧特征参数随点火时刻的提前而增加。HC排放随点火时刻的提前而下降,CO2和NOx排放随点火时刻的提前而增加,NOx排放的增加在大点火提前角下更明显。掺氢可降低HC排放,对CO和CO2排放影响不大。掺氢量大于10%时可提高天然气发动机热效率。  相似文献   

2.
不同点火提前角时HCNG发动机的燃烧与排放特性   总被引:4,自引:1,他引:3  
在一台火花点火天然气发动机上开展了在不同点火提前角下燃用不同体积掺氢比(O%~50%)的天然气掺氢燃料(HCNG)的试验研究,进行热效率、燃烧放热率、循环变动及排放特性的分析.结果表明:与原天然气发动机相比,HCNG发动机的最大扭矩点火提前角(MB了)减小,MBT时指示热效率变化不大;点火提前角增大时,火焰发展期增长,最大压力变动率减小,快速燃烧期和平均指示压力变动率先减小后增大;在相同点火提前角时,以上4个参数均随掺氢比的增加而减小.N0x、CO排放浓度随掺氢比增加而增大,CH4排放則相反.  相似文献   

3.
稀燃天然气掺氢发动机的热效率与排放特性   总被引:2,自引:0,他引:2  
为了分析在天然气中掺入不同体积比的氢气对发动机经济性和排放性的影响,在一台6缸火花点火天然气发动机上开展了体积掺氢比在不同工况下对热效率和排放特性影响的试验研究.结果显示掺氢可以拓宽发动机的稀燃极限,提高燃烧速度,使得最佳转矩点火提前角(MBT)相对推迟;在点火提前角不变的情况下掺氢对热效率没有明显优势,而且会使NOx排放升高.而在MBT时,掺氢可以一定程度上提高发动机的指示热效率,降低未燃CH4和CO的排放,改善NOx与未燃碳氢(主要为CH4)的trade-off关系.掺氢的优势还体现在可以让发动机高效的工作在更稀的情况下,从而有利于降低NOx的排放和传热损失.  相似文献   

4.
以台架试验的方法,对不同负荷与点火提前角下天然气掺氢发动机的经济性和排放特性进行了研究,试验中使用了掺氢比为0%~40%的天然气掺氢混合燃料。试验结果表明,随着掺氢比的增加,燃气消耗率呈降低趋势,发动机的经济性得到明显的改善;在不同负荷下,随着掺氢比的增加,NOx与CO的排放都呈增加趋势,CH4的排放呈降低趋势。掺氢比一定时,随着点火提前角和掺氢比的增加,NOx、CH4与CO排放都呈增加趋势,优化点火提前角可以改善天然气发动机的排放。  相似文献   

5.
增压稀燃天然气发动机排放特性   总被引:2,自引:0,他引:2  
为了研究增压稀燃天然气发动机的排放特性,对发动机进行了空燃比和点火提前角调整试验、十三工况排放等试验,并在增加氧化型催化转化器后进行了相关试验,对试验结果进行研究分析,获得了天然气发动机的排放规律.结果表明:NMHC排放随空燃比增大先减少后增加,NOx排放随空燃比增大先增加后减少,在空燃比19~21左右达到最大值.NMHC比排放随转速升高略有降低,NOx排放随转速升高先减小后增加,发动机最低NOx排放点所对应的发动机转速为1600~1800 r/min.定MAP下,NMHC排放随点火提前角增大先降低后增加,NOx排放随点火提前角增大而增大.加Ⅰ型氧化催化器后发动机NOx、CH4、CO、NMHC排放值分别减少了15%、97%、78%、60%.试验结果表明,增压稀燃和氧化型催化转化器相结合是天然气发动机一种有效方案.  相似文献   

6.
DME/CNG双燃料均质压燃发动机性能试验研究   总被引:4,自引:0,他引:4  
研究了二甲基醚和天然气双燃料均质压燃发动机性能和排放特性.结果表明,采用高十六烷值燃料二甲基醚和高辛烷值燃料天然气,可以拓宽均质压燃的运行工况范围.均质压燃发动机在中等负荷工况,热效率比传统压燃式发动机高.小负荷工况,采用二甲醚和大比例EGR方案可以提高热效率.和传统压燃式或点燃式发动机不同,均质压燃发动机的着火始点对经济性影响不大.均质压燃发动机的NOx排放极低,比原机降低95%以上.随着二甲基醚浓度增加,NOx排放增加,HC和CO排放降低;接近爆震燃烧区域,NOx排放急剧升高,而接近稀燃极限区域,HC和CO排放急剧升高,发动机热效率降低.  相似文献   

7.
基于一台可变压缩比火花点火(SI)单缸发动机,在不同废气再循环(EGR率为0~20%)、不同压缩比(8、9、10和11)下,对发动机燃烧和排放特性进行对比分析.结果表明:随着EGR率的增大,滞燃期和燃烧持续期变长,瞬时放热率曲线峰值减小并后移,缸内压力和最高平均燃烧温度降低.而增大压缩比则使滞燃期和燃烧持续期变短,缸内压力和燃烧温度升高.同时,NOx排放随EGR率的增大而降低,当压缩比为9时,20%,EGR率比无EGR时降低了92%,但随着压缩比增大NOx排放增多.CO和HC排放在EGR率较小时无明显变化,但随压缩比增大而减小,当EGR为5%,时,CO和HC排放最高降低7.8%和27%.  相似文献   

8.
在火花点火式天然气掺氢发动机上,开展天然气掺氢结合EGR时发动机循环变动的试验研究,分析了不同EGR率和掺氢比时发动机燃烧循环变动规律.结果表明,对于给定的燃料,随EGR率的增加,缸内最高压力和最大压力升高率下降,循环变动增加,缸内最高压力和最大压力升高率与其对应的曲轴转角之间的相关性减弱.平均指示压力下降且分布趋于分...  相似文献   

9.
为了研究在天然气中掺入不同体积比氢气对发动机怠速性能的影响,针对一台6缸天然气发动机开展了不同体积掺氢比的氢气/天然气混合燃料(HCNG)的怠速性能试验研究.试验证实掺氢后热效率提高,要达到相同的怠速转速可减少怠速旁通阀开度;在怠速情况下,掺氢使CH4、CO、NMHC排放下降,Nox排放上升,可通过点火提前角推迟来有效降低怠速Nox排放;在天然气中掺入适量氢气后有利于改善发动机怠速燃烧,从而增加怠速稳定性.在怠速条件下,掺氢后CO、CH4排放随转速升高先减小后增加;怠速转速升高,怠速稳定性变好.在天然气中掺入适量氢气后,发动机热效率提高,经济性改善.  相似文献   

10.
在单缸柴油机上进行了冷却废气再循环(EGR)对二甲醚(DME)/甲醇均质压燃(HCCI)燃烧过程影响的试验研究。结果表明,EGR对拓宽二甲醚/甲醇HCCI发动机的最大负荷作用不大;随着EGR率增大,主燃烧开始时刻和放热峰值明显后移,主燃烧持续期延长,放热峰值降低。EGR率为25%时的最大爆发压力比没有EGR时降低了近1.3 MPa,最大爆发压力出现的位置推迟了7°CA;EGR率增大,二甲醚/甲醇HCCI发动机的指示热效率升高。对应给定的EGR率,存在一个热效率较高的DME比例区间;HC和CO排放随EGR率的增大而增加,随DME比例的增加而降低,NOx排放接近于零。控制EGR率和DME比例是控制二甲醚/甲醇HCCI发动机燃烧过程、性能和排放的关键。  相似文献   

11.
An experimental investigation on the influence of different hydrogen fractions and EGR rates on the performance and emissions of a spark-ignition engine was conducted. The results show that large EGR introduction decreases the engine power output. However, hydrogen addition can increase the power output at large EGR operation. Effective thermal efficiency shows an increasing trend at small EGR rate and a decreasing trend with further increase of EGR rate. In the case of small EGR rate, effective thermal efficiency is decreased with the increase of hydrogen fraction; while in the case of large EGR rate, thermal efficiency is increased with increasing of hydrogen fraction. For a specified hydrogen fraction, NOx concentration is decreased with the increase of EGR rate and this effectiveness becomes more obviously at high hydrogen fraction. HC emission is increased with the increase of EGR rate and it decreases with the increase of hydrogen fraction. CO and CO2 emissions show little variations with EGR rate, but they decrease with the increase of hydrogen fraction. The study shows that natural gas–hydrogen blend combining with EGR can realize high-efficiency and low-emission spark-ignition engine.  相似文献   

12.
The effects of exhaust gas recirculation (EGR) on combustion and emissions under different hydrogen ratios were studied based on an engine with a gasoline intake port injection and hydrogen direct injection. The peak cylinder pressure increases by 9.8% in the presence of a small amount of hydrogen. The heat release from combustion is more concentrated, and the engine torque can increase by 11% with a small amount of hydrogen addition. Nitrogen oxide (NOx) emissions can be reduced by EGR dilution. Hydrogen addition offsets the blocking effect of EGR on combustion partially, therefore, hydrogen addition permits a higher original engine EGR rate, and yields a larger throttle opening, which improves the mechanical efficiency and decreases NOx emissions by 54.8% compared with the original engine. The effects of EGR on carbon monoxide (CO) and hydrocarbon (HC) emissions are not obvious and CO and HC emissions can be reduced sharply with hydrogen addition. CO, HC, and NOx emissions can be controlled at a lower level, engine output torque can be increased, and fuel consumption can be reduced significantly with the co-control of hydrogen addition and EGR in a hydrogen gasoline engine.  相似文献   

13.
基于一台可变压缩比SI单缸发动机,在不同EGR率(0~20%)、不同压缩比(8∶1~11∶1)条件下,对发动机动力性和经济性进行对比分析研究。结果表明:发动机的有效热效率、IMEP和功率在EGR率较小时变化均不明显,但随着EGR率继续增大,三者都迅速下降。而增大压缩比会使有效热效率、IMEP和功率在不同程度上都有所升高。同时,在全负荷或定负荷工况下,有效燃油消耗率总体上随EGR率的增大而升高,但在EGR率较小时变化比较平缓。随着压缩比增大发动机有效热效率越高,燃油利用率越高,有效燃油消耗率逐渐降低。  相似文献   

14.
An experimental study on the effect of hydrogen fraction and EGR rate on the combustion characteristics of a spark-ignition engine fueled with natural gas–hydrogen blends was investigated. The results show that flame development duration, rapid combustion duration and total combustion duration are increased with the increase of EGR rate and decreased with the increase of hydrogen fraction in the blends. Hydrogen addition shows larger influence on flame development duration than that on rapid combustion duration. The coefficient of variation of the indicated mean effective pressure increases with the increase of EGR rate. And hydrogen addition into natural gas decreases the coefficient of variation of the indicated mean effective pressure, and this effectiveness becomes more obviously at high EGR rate. Engine fueled with natural gas–hydrogen blends combining with proper EGR rate can realize the stable low temperature combustion in gas engine.  相似文献   

15.
The effects of hydrogen on the combustion characteristics, thermal efficiency, and emissions of a turbo gasoline direct-injection engine with exhaust gas recirculation (EGR) were investigated experimentally at brake mean effective pressures of 4, 6, and 8 bar at 2000 rpm. Four cases of hydrogen energy fraction (0%, 1%, 3% and 5%) of total fuel energy were studied. Hydrogen energy fraction of total fuel energy was hydrogen energy in the sum of energy of consumed gasoline and added hydrogen. The test results demonstrated that hydrogen addition improved the combustion speed and reduced cycle-to-cycle variation. In particular, cylinder-to-cylinder variation dramatically decreased with hydrogen addition at high EGR rates. This suggests that the operable EGR rate can be widened for a turbo gasoline direct-injection engine. The improved combustion and wider operable EGR rate resulted in enhanced thermal efficiency. However, the turbocharging effect acted in opposition to the thermal efficiency with respect to the EGR rate. Therefore, a different strategy to improve the thermal efficiency with EGR was required for the turbo gasoline direct-injection engine. HC and CO2 emissions were reduced but NOX emissions increased with hydrogen addition. The CO emissions as a function of engine load followed different trends that depended on the level of hydrogen addition.  相似文献   

16.
Study of cycle-by-cycle variations in a spark ignition engine fueled with natural gas–hydrogen blends combined with exhaust gas recirculation (EGR) was conducted. The effects of EGR ratio and hydrogen fraction on engine cycle-by-cycle variations are analyzed. The results show that the cylinder peak pressure, the maximum rate of pressure rise and the indicated mean effective pressure decrease and cycle-by-cycle variations increase with the increase of EGR ratio. Interdependency between the above parameters and their corresponding crank angles of cylinder peak pressure is decreased with the increase of EGR ratio. For a given EGR ratio, combustion stability is promoted and cycle-by-cycle variations are decreased with the increase of hydrogen fraction in the fuel blends. Non-linear relationship is presented between the indicated mean effective pressure and EGR ratio. Slight influence of EGR ratio on indicated mean effective pressure is observed at low EGR ratios while large influence of EGR ratio on indicated mean effective pressure is demonstrated at high EGR ratios. The high test engine speed has lower cycle-by-cycle variations due to the enhancement of air flow turbulence and swirls in the cylinder. Increasing hydrogen fraction can maintain low cycle-by-cycle variations at high EGR ratios.  相似文献   

17.
The experimental study was carried out on a constant speed multi-cylinder spark ignition engine fueled with hydrogen. Exhaust gas recirculation (EGR) and water injection techniques were adopted to control combustion anomalies (backfire and knocking) and reduce NOx emission at source level. The experimental tests were conducted on the engine with varied EGR rate (0%–28% by volume) and water to hydrogen ratio (WHR) (0–9.25) at 15 kW load. It was observed from the experiments that both the strategies can control backfire effectively, but water injection can effectively control backfire compared to EGR. The water injection and EGR reduce the probability of backfire occurrence and its propagation due to the increase in the requirement of minimum ignition energy (MIE) of the charge, caused mainly due to charge dilution effect, and reduction in flame speed respectively. The NOx emission was continuously reduced with increase in EGR rate and WHR, but at higher rates (of EGR and WHR), there was an issue of stability of engine operation. It was found from the experimental results that at 25% EGR, there was 57% reduction in NOx emission without drop in brake thermal efficiency whereas, with WHR of 7.5, the NOx emission was reduced by 97% without affecting the efficiency. The salient point emerging from the study is that water injection technique can control backfire with ultra-low (near zero) NOx emission without compromising the performance of the hydrogen fueled spark ignition engine.  相似文献   

18.
This study investigated the engine performance and emissions of a supercharged dual-fuel engine fueled by hydrogen-rich coke oven gas and ignited by a pilot amount of diesel fuel. The engine was tested for use as a cogeneration engine, so power output while maintaining a reasonable thermal efficiency was important. Experiments were carried out at a constant pilot injection pressure and pilot quantity for different fuel-air equivalence ratios and at various injection timings without and with exhaust gas recirculation (EGR). The experimental strategy was to optimize the injection timing to maximize engine power at different fuel-air equivalence ratios without knocking and within the limit of the maximum cylinder pressure. The engine was tested first without EGR condition up to the maximum possible fuel-air equivalence ratio of 0.65. A maximum indicated mean effective pressure (IMEP) of 1425 kPa and a thermal efficiency of 39% were obtained. However, the nitrogen oxides (NOx) emissions were high. A simulated EGR up to 50% was then performed to obtain lower NOx emissions. The maximum reduction of NOx was 60% or more maintaining the similar levels of IMEP and thermal efficiency. Two-stage combustion was obtained; this is an indicator of maximum power output conditions and a precursor of knocking combustion.  相似文献   

19.
为了研究可变喷嘴涡轮增压(VNT)技术、排气再循环(EGR)技术及大气压力三者共同作用对车用柴油机性能与排放的影响,利用大气压力模拟装置开展了相应的试验研究,基于响应曲面法以响应曲面图的形式分析研究VNT喷嘴环开度、EGR阀开度及大气压力3个参数交互作用对柴油机性能与排放的影响。结果表明:随着大气压力的降低及EGR阀开度的增大,柴油机动力性下降,经济性恶化。当VNT与EGR耦合时,在最大转矩工况,在EGR阀关闭及开度较小时,随着VNT喷嘴环开度的减小,转矩呈现增大的趋势,有效燃油消耗率逐渐降低;而在EGR阀开度较大及全开时,随着VNT喷嘴环开度的减小,转矩降低,油耗升高。在标定功率工况,无论EGR阀置于何种开度,随着VNT喷嘴环开度的减小,转矩均增大,油耗均降低。随着大气压力的升高,NOx比排放升高,烟度降低。当VNT与EGR耦合时,在不同的运行工况下,NOx比排放与烟度表现出不同的变化趋势。欲获得良好的整机性能,针对不同的运行工况,需要合理匹配VNT喷嘴环开度与EGR阀开度。  相似文献   

20.
为在保持柴油机动力性和经济性能的同时有效改善其排放性能,在一台4缸柴油机上针对6、12、24mg循环喷油量的负荷工况(记作低、中、高负荷)对比研究了冷、热废气再循环(EGR)对性能、燃烧及排放特性的影响。结果表明:EGR的引入减少了新鲜进气量,整体上延长了滞燃期,减缓了燃烧放热速率,降低了压力升高率;热EGR提高了进气温度,使低负荷时的碳氢化合物(HC)排放显著降低,热效率提高,而高负荷高EGR率时由于过量空气系数偏低引起了热效率的明显降低,对最大压力升高率的降低作用也弱于冷EGR;随着EGR率的提高,三种负荷下的氮氧化物(NO_x)排放均大幅度降低,碳烟排放在低、中负荷时较低,而在高负荷时则明显升高,NO_x与碳烟排放之间出现此消彼长的矛盾趋势。冷的高EGR率下的碳烟排放升高幅度减小,有效地缓解了这种矛盾。综合分析低、中、高负荷下的热效率及排放,低负荷时为提高热效率宜采用热EGR,高负荷时为降低过高的压力升高率并兼顾热效率则更适合采用冷EGR。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号