首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
采用动态热机械分析(DMA)法研究了HTPB/AP基浇注PBX炸药的动态力学性能,利用损耗因子(tanδ)、动态柔量(D′和D″)、黏弹系数和交联密度表征了其在70℃下的老化性能。结果表明,随老化时间的延长,HTPB/AP基浇注PBX炸药的tanδ的β峰值呈先增加后减小的变化趋势,α峰值则持续减小;D′和D″均呈先增加后逐渐减小的变化趋势;黏弹系数C_1增加;交联密度呈现先增加后略有降低再增加的变化规律。同时,扫描电子显微镜(SEM)的分析测定结果也验证了老化过程中造成力学损耗降低的根本原因是黏结剂基体的氧化交联,主要原因是填料/黏结剂的界面脱粘。  相似文献   

2.
交联密度测试方法及其在火炸药中应用的研究进展   总被引:3,自引:0,他引:3  
从交联密度测试方法的原理、适用体系及其优缺点等方面,介绍了基于橡胶弹性理论的平衡溶胀法、应力-应变法、动态热机械分析(DMA)法及核磁共振(NMR)法等4种交联密度测试方法;分析了近年来交联密度测试方法在火炸药中最新研究进展和存在的问题。提出了今后交联密度测试方法研究的重点为:拓展NMR法和平衡溶胀法在PBX炸药中的适用性研究;加强NMR法对火炸药黏结剂体系固化、老化过程的实时监测技术研究;系统研究交联密度与力学性能之间的相关性关系。附参考文献68篇。  相似文献   

3.
NEPE推进剂老化过程中结构与力学性能的关系   总被引:2,自引:0,他引:2  
为考察NEPE推进剂的老化特性,在60,65,70和75℃老化了推进剂样品,研究了其在常温时的抗拉强度σm,初始模量E0与黏合剂母体凝胶质量分数ω、化学交联密度υe、物理交联密度υp之间的关系.用动态热机械分析仪(DMA)测试了多个频率下老化样品的损耗因子tanδ、损耗模量半高峰宽D h/2.结果表明,高温加速老化过程中NEPE推进剂样品σm和E0下降的原因是推进剂黏合剂母体结构的ω,υe 和υp下降.NEPE推进剂降解和解聚由黏合剂母体结构变化引起.  相似文献   

4.
研究了不同老化温度(300℃、320℃、330℃、340℃、350℃)下,短时(30 min)热空气老化对苯基硅橡胶(PS5360)硫化胶老化性能的影响。采用低场NMR橡胶交联密度测定仪研究了老化前后PS5360硫化胶的交联密度变化。测试了其在老化前后的物理力学性能变化。依据不同的应用环境,使用动态热机械分析仪分别在20℃和110℃下测量了老化后PS5360硫化胶的动态力学性能。结果表明:随着短时老化温度的提高,PS5360硫化胶在中低频(5~150 Hz)环境下的介质损耗因数逐渐提高,交联密度逐渐降低,物理力学性能逐渐下降。  相似文献   

5.
将浇注型PBX-1药柱以150、240m/s速度撞击靶板,用扫描电子显微镜(SEM)技术和差示扫描量热仪(DSC)技术对撞击加载后的样品进行了分析,研究了浇注PBX炸药药柱的动态撞击性能。结果表明,在150、240m/s撞击加载条件下,PBX-1炸药不发生反应或点火;浇注炸药药柱的损伤主要表现为炸药颗粒破碎和颗粒与黏结剂的脱离。随着撞击加载速度的增大,PBX-1炸药颗粒破碎程度增大,炸药颗粒与高分子基体发生脱离现象越严重;PBX-1炸药撞击前后,热分解性能没有发生本质性的变化。  相似文献   

6.
为研究乙烯-醋酸乙烯酯共聚物(EVA)对RDX基含铝炸药性能的影响,在A-IX-II炸药中添加EVA制备了含铝PBX炸药。用分子动力学(MD)方法计算了黏结剂EVA与A-IX-II炸药各组分的结合能以及作用方式、AIX-II炸药及含铝PBX炸药的力学性能。计算结果表明,EVA与A-IX-II炸药各组分的结合能均大于0,相互作用力以范德华力为主;EVA能够显著提升A-IX-II炸药的力学性能,使其弹性模量从20.58GPa升至33.27GPa。对A-IX-II炸药和含铝PBX炸药进行了静态力学性能试验,计算结果与试验结果一致性较好。  相似文献   

7.
HTPB基PBX的模量与撞击感度的关系   总被引:4,自引:0,他引:4  
为改善HTPB基PBX炸药的易损性,研究了炸药的模量与撞击感度之间的关系。通过改变端羟基聚丁二烯(HTPB)基PBX的固化参数与黏结剂的含量,制备了一系列具有不同模量的PBX,利用50%特性落高法对其撞击感度进行测试。结果表明,PBX的撞击感度随抗张模量和压缩模量的下降而降低。从理论上分析了影响撞击感度的模量因素和机理,认为通过调整PBX的力学性能可改善PBX炸药的机械撞击感度。  相似文献   

8.
浇注钝感PBX的研究进展及发展趋势   总被引:1,自引:0,他引:1  
介绍了浇注类钝感PBX高聚物黏结炸药)在国内外的研究进展,总结了研制浇注钝感PBX的技术途径和发展方向,认为主体炸药的钝感处理及其与现有的新型性能优异的黏结剂、增塑剂和钝感高能单质炸药的配合使用应当是今后研究的重点。  相似文献   

9.
摩擦效应对某PBX炸药动态力学性能的影响   总被引:1,自引:0,他引:1  
基于分离式霍普金森压杆(SHPB)围压加载下的试样受力模型,考虑试样与套筒间的摩擦效应,建立了动态力学性能参量(动态泊松比及动态杨氏模量)的修正方法,并以某浇注PBX炸药为例,分别以常规方法和修正方法计算了4种试样的动态力学性能,并进行了对比。结果表明,对于实验所用的浇注PBX炸药,在应变率300~2000s~(-1)内,修正方法与常规方法所获得的动态参量误差不超过5%,可以忽略摩擦效应对此PBX炸药动态参量的影响。  相似文献   

10.
为了研究黏结剂对CL-20/FOX-7基PBX性能的影响,分别以Estane、EPDM、ACM、EVA为黏结剂,采用水悬浮法制备了含有不同黏结剂成分的CL-20/FOX-7基高聚物黏结炸药(PBX);采用场发射扫描电子显微镜(SEM)、激光粒度分析仪、X射线衍射仪(XRD)、差示扫描量热仪(DSC)对样品结构、形貌和热分解特性进行了表征;使用撞击感度测试仪、摩擦感度测试仪和小型烤燃实验装置测试了不同样品的机械感度和烤燃特性。结果表明,以EVA为黏结剂制备的CL-20/FOX-7基PBX造型粉颗粒密实,表面光滑且没有脱粘外漏现象,包覆粘结效果最好;以EVA为黏结剂制备的PBX活化能较细化CL-20提高了87.75 kJ/mol,较FOX-7原料提高了42.52 kJ/mol,说明使用EVA的PBX热稳定性较原料有一定提升;同时该PBX样品特性落高(H 50)较细化CL-20提高25.6 cm,摩擦感度爆炸概率降低52%,较使用Estane、EPDM和ACM的PBX样品机械感度更低;使用EVA的PBX药柱在升温速率为6K/min的慢速烤燃条件下,烤燃反应等级为燃烧,说明该配方能够达到烤燃安全试验要求,安全性能较好。  相似文献   

11.
This study examines for the first time how matrix crosslinking affects the composite physical and mechanical properties of a graphite fiber reinforced PMR polyimide composite during long-term isothermal aging. Unidirectional composite specimens of Celion 6000/PMR-P1 were isothermally exposed at 288°C in air for various time periods up to 5000 h. The matrix crosslink densities were estimated from the kinetic theory of rubber elasticity and shifts in the glass transition temperatures (Tgs). The Tg, coefficient of thermal expansion, density, weight loss, moisture absorption, and elevated temperature flexural and interlaminar shear properties were also determined. Several linear relationships were found between the matrix crosslink density and composite physical and mechanical properties. The Tg, initial weight loss and density, and elevated temperature interlaminar shear strength increase with an increase in crosslink density. Conversely, the initial moisture absorption and coefficient of thermal expansion decrease with increasing crosslink density. As expected, the elevated temperature flexural strength and modulus show no direct correlations with crosslink density. Further, after achieving the highest matrix crosslink density, several of the composite properties begin to decrease rapidly. These findings suggest that time-temperature dependent nature of attaining the maximum matrix crosslinking is closely linked to the onset of the composite property degradation. Though much more work is needed, a fundamental understanding of the relationships between matrix crosslinking and composite physical and mechanical property can provide a scientific basis for the prediction of the extent of composite service life not only for PMR polyimides but also for other thermosetting matrix resins, such as epoxies and bismaleimides.  相似文献   

12.
以乙烯–1–辛烯共聚物(POE)为基体材料,叔丁基过氧化碳酸–2–乙基己酯(TBEC)和四[β–(3,5–二叔丁基–4–羟基苯基)丙酸]季戊四醇酯(抗氧剂1010)为辅助材料,采用高温热压和常温冷压工艺来制备太阳能电池封装膜,考察了老化时间对POE胶膜凝胶含量、结晶度、交联度等微观结构和力学性能的影响,分析了POE胶膜微观结构与宏观力学性能之间的关系。结果表明,老化过程中,胶膜的拉伸强度呈先升高后降低趋势,与凝胶含量、结晶度和交联度等微观结构的变化规律一致,断裂伸长率则随着老化时间的延长而逐渐减小;对于胶膜的老化,前期(1 500 h以前)以交联和结晶为主,后期(1 500 h以后)则以分子链的断链为主。  相似文献   

13.
This article dealt with the relationship between mechanical properties and crosslinked networks of natural rubber (NR) reinforced by zinc dimethacrylate (ZDMA) after thermal aging. After thermal aging at the present experimental conditions, the covalent crosslink density showed a decrease all the time, whereas the ionic crosslink density was stable at 80°C but decreased at a higher temperature. The decrease in the total crosslink density after aging indicates the degradation of the crosslinked network. However, an experimental phenomenon observed was that the tensile strength and tear strength increased in a certain degree after aging at 80°C or at a 100°C for a short time. In addition, the thermal stability of the NR/ZDMA composite was evaluated by thermal gravimetric analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Thermally stable materials can be achieved by crosslinking. This article presents the thermal aging and thermal energy storage properties of ethylene–octene copolymer (EOR) and low‐density polyethylene (LDPE) blends as affected by silane crosslinking. Fourier transform infrared spectroscopy revealed a similar degree of silane grafting among the various blend compositions. However, the highest crosslink content was observed in EOR, whereas the lowest was found for LDPE. From melting temperature and heat of fusion data, a linear relationship between the amount of the crystalline component and the crosslink content was found. The decrease in crystallinity due to crosslinking was very limited, which implied a high thermal energy storage capacity of the silane‐crosslinked products and their good mechanical properties at room temperature. Furthermore, a strong ability to retain the properties after thermal aging indicated good thermal stability of the materials. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The structural characteristics of four epoxy adhesives, obtained by crosslinking an epoxy novolac with various levels of a substituted imidazole curing agent, were investigated and correlated with thermal and mechanical properties. Variations in network structure were characterized by measuring crosslink densities and by qualitatively assessing glassy state free volume from densities and coefficients of thermal expansion. Differential scanning calorimetry was used to obtain glass transition temperatures, and dynamic mechanical thermal analysis was used to follow primary (alpha) and secondary (beta) transitions. Bulk behavior was characterized by tensile modulus, strength, and toughness, together with compressive modulus and yield strength. The effect of sub-Tg aging on compressive yield strength was investigated as well. As the level of imidazole increased, crosslink density, and hence network packing efficiency and free volume, decreased. For fully cured networks, both the glass and the alpha transition temperatures increased with crosslink density. Calculated activation enthalpies and entropies indicated significant degrees of network cooperativity in the alpha transitions, particularly for the more highly crosslinked systems. Beta transition temperatures, however, were found to be independent of crosslink density. Bulk properties generally showed a dependence both on crosslink density and free volume. Yield stress, for example, was highest for the network with lowest crosslink density and free volume. Volume relaxation associated with physical aging also caused yield stress to increase.  相似文献   

16.
Chemical crosslinking is possibly the most significant factor affecting the mechanical behavior of rubbers. In this study, we investigated the evolution of network structures (the crosslinking degree and crosslinking density) during the thermooxidative aging of a nitrile–butadiene rubber (NBR) using characterization methods such as low‐dimensional NMR, solvent extraction, solvent swelling, IR spectroscopy, and mechanical property measurements. The NMR and solvent extraction results show the change of the crosslinking degree. The solvent swelling results show the change of the crosslinking density. The IR results show the chemical changes relating to crosslinking and chain scissions. Therefore, a comprehensive picture of the thermal oxidative aging of the NBR compound was drawn by the integration of various results from these methods. Crosslinking occurred throughout the aging process, whereas chain scissions took place and competed with crosslinking in the later stage. The crosslinking density increased at a nearly constant rate, whereas the increase in the crosslinking degree slowed down in the later stage. The crosslinking density was closely correlated with the hardness and Young's modulus. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41319.  相似文献   

17.
炭黑对NBR复合材料交联密度和力学性能的影响   总被引:3,自引:0,他引:3  
采用核磁共振交联密度仪,考察了炭黑粒径、结构度和用量对丁腈橡胶(NBR)复合材料的交联密度和力学性能的影响规律。研究表明:炭黑加入后硫化胶的交联密度增加,且随炭黑用量增加而增加,随粒径增加而减小;炭黑结构度对化学交联密度影响大于物理交联密度。随着炭黑粒径的减小,硫化胶的拉伸强度、撕裂强度、定伸应力增加,高定伸下炭黑粒径对应力的贡献大于低定伸。炭黑结构度增加,硫化胶的拉伸强度、定伸应力增加,撕裂强度降低。  相似文献   

18.
Peroxide curing of brominated butyl rubber (BIIR) is an attractive topic, but the degradation of BIIR during the curing is a drawback needed to be overcome. Coagent assisted peroxide curing system is an attractive and effective choice in order to increase the crosslink density of rubbers. 1,2‐polybutadiene (1,2‐PB) is used as a crosslinking coagent for the curing of BIIR by dicumyl peroxide (DCP), and the effect of 1,2‐PB on the curing characteristics, crosslink density, and mechanical properties is investigated. The addition of 1,2‐PB affects the curing characteristics of BIIR compound and significantly increases the crosslink density of BIIR vulcanizates. With increasing 1,2‐PB content, the tensile strength and stresses at a given extension of BIIR vulcanizates increase, but the elongation at break decreases. A stress‐softening effect of the carbon black filled BIIR vulcanizates is observed and becomes more pronounced with increasing 1,2‐PB content. The addition of 1,2‐PB increases the stress relaxation index of BIIR. GPC and 13C‐NMR results indicate 1,2‐PB participates in the crosslinking reaction, and the existence of 1,2‐PB component in the insoluble fraction of BIIR/1,2‐PB vulcanizates is confirmed by solid‐state 13C‐NMR. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43280.  相似文献   

19.
In many applications, e.g., wire and cable insulation, hot water pipe, high‐temperature properties of polymer are essential. This article presents the use of silane crosslinking together with the addition of particular filler in improving the thermal and mechanical properties of ethylene‐octene copolymer (EOC). The effects of filler surface characteristics on siloxane network structure developed and final properties of the crosslinked products are discussed. The results show an increase in the decomposition temperature of EOC more than 50°C after modification. Only crosslinked composites are able to withstand the high‐temperature environment of aging test which is beyond the melting temperature of the matrix polymer. The crosslinked composites filled with calcium carbonate show superior properties to those with silica, due to a higher crosslink density and tighter network structure formed. The silane coupling mechanism and the presence of bound polymer on silica surfaces cause difficulties for the crosslink formation in the silica filled systems. However, an advantageous influence of both silane coupling and crosslink reaction in the silica filled composites is seen on the enhanced tensile strength and modulus of the materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Equilibrium swelling and rheological tests were adopted to systematically investigate the effects of softener type and dosage on the crosslink densities. The results turned out that the chemical crosslink density could be distinguished from the physical crosslink density by comparing the results of equilibrium swelling and rheological tests. The liquid butadiene (LB) as a softener leads to the greatest reduction in crosslink density, followed by polyethylene wax (PW) and paraffinic oil (PO). The tensile strength decreases with increasing PO content while shows peak values with increase of LB and PW contents. The dependencies of chemical crosslink density on the aging time under 150°C are quite different for the three softeners, which can be expected from the double crosslinking networks consisting of small softener and large main crosslinking networks. Further investigation has been performed to correlate the tensile strength with chemical crosslink density of ethylene propylene diene monomer elastomer vulcanizates. Three different linear relationships can be obtained for the softeners independent of the aging time. It can now be expected from this study that the role of some new softeners in rubber compounds is not only confined to plasticization but also forms crosslinking networks in the peroxide-cured rubbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号