首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a new algorithm for computing the distance from a point to an arbitrary polygonal mesh. Our algorithm uses a multiresolution hierarchy of bounding volumes generated by geometric simplification. Our algorithm is dynamic, exploiting coherence between subsequent queries using a priority process and achieving constant time queries in some cases. It can be applied to meshes that transform rigidly or deform nonrigidly. We illustrate our algorithm with a simulation of particle dynamics and collisions with a deformable mesh, the computation of distance maps and offset surfaces, the computation of an approximation to the expensive Hausdorff distance between two shapes, and the detection of self-intersections. We also report comparison results between our algorithm and an alternative algorithm using an octree, upon which our method permits an order-of-magnitude speed-up  相似文献   

2.
General Object Reconstruction Based on Simplex Meshes   总被引:9,自引:1,他引:8  
In this paper, we propose a general tridimensional reconstruction algorithm of range and volumetric images, based on deformable simplex meshes. Simplex meshes are topologically dual of triangulations and have the advantage of permitting smooth deformations in a simple and efficient manner. Our reconstruction algorithm can handle surfaces without any restriction on their shape or topology. The different tasks performed during the reconstruction include the segmentation of given objects in the scene, the extrapolation of missing data, and the control of smoothness, density, and geometric quality of the reconstructed meshes. The reconstruction takes place in two stages. First, the initialization stage creates a simplex mesh in the vicinity of the data model either manually or using an automatic procedure. Then, after a few iterations, the mesh topology can be modified by creating holes or by increasing its genus. Finally, an iterative refinement algorithm decreases the distance of the mesh from the data while preserving high geometric and topological quality. Several reconstruction examples are provided with quantitative and qualitative results.  相似文献   

3.
徐岗  朱亚光  李鑫  许金兰  汪国昭  许健泉 《软件学报》2016,27(10):2499-2508
如何实现极小曲面的快速三维建模,是几何设计与计算领域中的难点和热点问题.给定一条封闭的边界离散折线,本文研究如何构造以其为边界的四边网格离散极小曲面.首先从曲面的内蕴微分几何度量出发,给出了离散四边网格极小曲面的数学定义;然后利用保长度边界投影、四边网格生成、径向基函数插值映射和非线性优化技术,提出了由给定边界离散折线快速构造离散四边网格极小曲面的一般技术框架.最后通过若干建模实例验证了本文方法的有效性.该方法可实现四边网格极小曲面的高质量建模,在建筑几何领域具有一定的应用价值.  相似文献   

4.
Identifying multiple deformable parts on meshes and establishing dense correspondences between them are tasks of fundamental importance to computer graphics, with applications to e.g. geometric edit propagation and texture transfer. Much research has considered establishing correspondences between non‐rigid surfaces, but little work can both identify similar multiple deformable parts and handle partial shape correspondences. This paper addresses two related problems, treating them as a whole: (i) identifying similar deformable parts on a mesh, related by a non‐rigid transformation to a given query part, and (ii) establishing dense point correspondences automatically between such parts. We show that simple and efficient techniques can be developed if we make the assumption that these parts locally undergo isometric deformation. Our insight is that similar deformable parts are suggested by large clusters of point correspondences that are isometrically consistent. Once such parts are identified, dense point correspondences can be obtained by an iterative propagation process. Our techniques are applicable to models with arbitrary topology. Various examples demonstrate the effectiveness of our techniques.  相似文献   

5.
Geometric signal compression   总被引:2,自引:1,他引:1       下载免费PDF全文
Compression of mesh attributes becomes a challenging problem due to the great need for efficient storage and fast transmission. This paper presents a novel geometric signal compression framework for all mesh attributes, including position coordinates, normal, color, texture, etc. Within this framework, mesh attributes are regarded as geometric signals defined on mesh surfaces. A planar parameterization algorithm is first proposed to map 3D meshes to 2D parametric meshes. Geometric signals are then transformed into 2D signals, which are sampled into 2D regular signals using an adaptive sampling method. The JPEG2000 standard for still image compression is employed to effectively encode these regular signals into compact bit-streams with high rate/distortion ratios. Experimental results demonstrate the great application potentials of this framework.  相似文献   

6.
Dynamic surfaces arise in many applications, such as free surfaces in multiphase flows and moving interfaces in fluid–solid interaction. In many engineering applications, an explicit surface triangulation is often used to represent dynamic surfaces, posing significant challenges in adapting their meshes, especially if large curvatures and sharp features may dynamically emerge or vanish as the surfaces evolve. In this paper, we present an anisotropic mesh adaptation technique to meet these challenges. Our technique strives for optimal aspect ratios of the triangulation to reduce positional errors and to capture geometric features of dynamic surfaces based on a novel extension of the quadrics. Our adaptation algorithm combines the operations of vertex redistribution, edge flipping, edge contraction, and edge splitting. Experimental results demonstrate the effectiveness of our anisotropic adaptation technique for static and dynamic surfaces.  相似文献   

7.
We present a novel framework for polyhedral mesh editing with face‐based projective maps that preserves planarity by definition. Such meshes are essential in the field of architectural design and rationalization. By using homogeneous coordinates to describe vertices, we can parametrize the entire shape space of planar‐preserving deformations with bilinear equations. The generality of this space allows for polyhedral geometric processing methods to be conducted with ease. We demonstrate its usefulness in planar‐quadrilateral mesh subdivision, a resulting multi‐resolution editing algorithm, and novel shape‐space exploration with prescribed transformations. Furthermore, we show that our shape space is a discretization of a continuous space of conjugate‐preserving projective transformation fields on surfaces. Our shape space directly addresses planar‐quad meshes, on which we put a focus, and we further show that our framework naturally extends to meshes with faces of more than four vertices as well.  相似文献   

8.
Computer-generated erosion and weathering are important to convey setting and mood in computer generated images. Heightmap based landforms are good for distant scenes, but inadequate for scenes containing concave rock formations. Voxel based terrain editing algorithms do admit concave surfaces but do not scale. We introduce weathering on triangulated surface meshes, using a memory efficient modification of the Delaunay deformable model. This structure allows the freedom of an unorganized point cloud, the geometric information and visualization of a surface mesh, and the topological freedom of volumetric approaches—all while scaling linearly with surface complexity. We implement both spheroidal weathering and hydraulic erosion algorithms on this structure and demonstrate that the resulting terrain is visually plausible at modest computational cost.  相似文献   

9.
We propose Partition of Unity Parametrics (PUPs), a natural extension of NURBS that maintains affine invariance. PUPs replace the weighted basis functions of NURBS with arbitrary weight-functions (WFs). By choosing appropriate WFs, PUPs yield a comprehensive geometric modeling framework, accounting for a variety of beneficial properties, such as local support, specified smoothness, arbitrary sharp features and approximating or interpolating curves. Additionally, we consider interactive specification of WFs to fine-tune the character of curves and generate non-trivial effects. This serves as a basis for a system where users model the tools used for modeling, here weight-functions, in tandem with the model itself, which we dub a meta-modeling system. PUP curves and surfaces are considered in detail. Curves illustrate basic concepts that apply directly to surfaces. For surfaces, the advantages of PUPs are more pronounced; permitting non-tensor WFs and direct parameter space manipulations. These features allow us to address two difficult geometric modeling problems (sketching features onto surfaces and converting planar meshes into parametric surfaces) in a conceptually and computationally simple way.  相似文献   

10.
3D anatomical shape atlas construction has been extensively studied in medical image analysis research, owing to its importance in model-based image segmentation, longitudinal studies and populational statistical analysis, etc. Among multiple steps of 3D shape atlas construction, establishing anatomical correspondences across subjects, i.e., surface registration, is probably the most critical but challenging one. Adaptive focus deformable model (AFDM) [1] was proposed to tackle this problem by exploiting cross-scale geometry characteristics of 3D anatomy surfaces. Although the effectiveness of AFDM has been proved in various studies, its performance is highly dependent on the quality of 3D surface meshes, which often degrades along with the iterations of deformable surface registration (the process of correspondence matching). In this paper, we propose a new framework for 3D anatomical shape atlas construction. Our method aims to robustly establish correspondences across different subjects and simultaneously generate high-quality surface meshes without removing shape details. Mathematically, a new energy term is embedded into the original energy function of AFDM to preserve surface mesh qualities during deformable surface matching. More specifically, we employ the Laplacian representation to encode shape details and smoothness constraints. An expectation–maximization style algorithm is designed to optimize multiple energy terms alternatively until convergence. We demonstrate the performance of our method via a set of diverse applications, including a population of sparse cardiac MRI slices with 2D labels, 3D high resolution CT cardiac images and rodent brain MRIs with multiple structures. The constructed shape atlases exhibit good mesh qualities and preserve fine shape details. The constructed shape atlases can further benefit other research topics such as segmentation and statistical analysis.  相似文献   

11.
Depending upon the numerical approximation method that may be implemented, hexahedral meshes are frequently preferred to tetrahedral meshes. Because of the layered structure of hexahedral meshes, the automatic generation of hexahedral meshes for arbitrary geometries is still an open problem. This layered structure usually requires topological modifications to propagate globally, thus preventing the general development of meshing algorithms such as Delaunay??s algorithm for tetrahedral meshes or the advancing-front algorithm based on local decisions. To automatically produce an acceptable hexahedral mesh, we claim that both global geometric and global topological information must be taken into account in the mesh generation process. In this work, we propose a theoretical classification of the layers or sheets participating in the geometry capture procedure. These sheets are called fundamental, or fun-sheets for short, and make the connection between the global layered structure of hexahedral meshes and the geometric surfaces that are captured during the meshing process. Moreover, we propose a first generation algorithm based on fun-sheets to deal with 3D geometries having 3- and 4-valent vertices.  相似文献   

12.
Enabling animators to smoothly transform between animated meshes of differing topologies is a long‐standing problem in geometric modelling and computer animation. In this paper, we propose a new hybrid approach built upon the advantages of scalar field‐based models (often called implicit surfaces) which can easily change their topology by changing their defining scalar field. Given two meshes, animated by their rigging‐skeletons, we associate each mesh with its own approximating implicit surface. This implicit surface moves synchronously with the mesh. The shape‐metamorphosis process is performed in several steps: first, we collapse the two meshes to their corresponding approximating implicit surfaces, then we transform between the two implicit surfaces and finally we inverse transition from the resulting metamorphosed implicit surface to the target mesh. The examples presented in this paper demonstrating the results of the proposed technique were implemented using an in‐house plug‐in for Maya?.  相似文献   

13.
T-splines are a generalization of NURBS surfaces, the control meshes of which allow T-junctions. T-splines can significantly reduce the number of superfluous control points in NURBS surfaces, and provide valuable operations such as local refinement and merging of several B-splines surfaces in a consistent framework. In this paper, we propose a variant of T-splines called Modified T-splines. The basic idea is to construct a set of basis functions for a given T-mesh that have the following nice properties: non-negativity, linear independence, partition of unity and compact support. Due to the good properties of the basis functions, the Modified T-splines are favorable both in adaptive geometric modeling and isogeometric analysis.  相似文献   

14.
Geometric deformable models based on the level set method have become very popular in the last decade. To overcome an inherent limitation in accuracy while maintaining computational efficiency, adaptive grid techniques using local grid refinement have been developed for use with these models. This strategy, however, requires a very complex data structure, yields large numbers of contour points, and is inconsistent with the implementation of topology-preserving geometric deformable models (TGDMs). In this paper, we investigate the use of an alternative adaptive grid technique called the moving grid method with geometric deformable models. In addition to the development of a consistent moving grid geometric deformable model framework, our main contributions include the introduction of a new grid nondegeneracy constraint, the design of a new grid adaptation criterion, and the development of novel numerical methods and an efficient implementation scheme. The overall method is simpler to implement than using grid refinement, requiring no large, complex, hierarchical data structures. It also offers an extra benefit of automatically reducing the number of contour vertices in the final results. After presenting the algorithm, we demonstrate its performance using both simulated and real images. This work was supported in part by NSF/ERC Grant CISST#9731748 and by NIH/NINDS Grant R01NS37747.  相似文献   

15.
Interactive global illumination for fully deformable scenes with dynamic relighting is currently a very elusive goal in the area of realistic rendering. In this work we propose a system that is based on explicit visibility calculations and which is highly efficient and scalable. The rendering equation defines the light exchange between surfaces, which we approximate by subsampling. By utilizing the power of modern parallel GPUs using the CUDA framework we achieve interactive frame rates. Since we update the global illumination continuously in an asynchronous fashion, we maintain interactivity at all times for moderately complex scenes. We show that we can achieve higher frame rates for scenes with moving light sources, diffuse indirect illumination and dynamic geometry than other current methods, while maintaining a high image quality.  相似文献   

16.
We present a real-time method for detecting deformable surfaces, with no need whatsoever for a priori pose knowledge. Our method starts from a set of wide baseline point matches between an undeformed image of the object and the image in which it is to be detected. The matches are used not only to detect but also to compute a precise mapping from one to the other. The algorithm is robust to large deformations, lighting changes, motion blur, and occlusions. It runs at 10 frames per second on a 2.8 GHz PC.We demonstrate its applicability by using it to realistically modify the texture of a deforming surface and to handle complex illumination effects. Combining deformable meshes with a well designed robust estimator is key to dealing with the large number of parameters involved in modeling deformable surfaces and rejecting erroneous matches for error rates of more than 90%, which is considerably more than what is required in practice.  相似文献   

17.
This article describes how to use level sets to represent and compute deformable surfaces. A deformable surface is a sequence of surface models obtained by taking an initial model and incrementally modifying its shape. Typically, we can parameterize the deformation over time, and thus we can imagine that a surface moves or flows under the influence of a vector field. The surface flow, v, can be determined as a function of spatial position (and time), or it can depend on the shape of the surface itself. The latter is called a geometric flow. Deformable surfaces have been used to solve a variety of problems in image processing, computer vision, visualization, and graphics. In graphics, for instance, deformable surface models have been used to form sequences of shapes that animate the morphing of one object into another. They have also been used to denoise or smooth surface models derived from a set of noisy 3D measurements.  相似文献   

18.
We present techniques for warping and blending (or subtracting) geometric textures onto surfaces represented by high resolution level sets. The geometric texture itself can be represented either explicitly as a polygonal mesh or implicitly as a level set. Unlike previous approaches, we can produce topologically connected surfaces with smooth blending and low distortion. Specifically, we offer two different solutions to the problem of adding fine-scale geometric detail to surfaces. Both solutions assume a level set representation of the base surface which is easily achieved by means of a mesh-to-level-set scan conversion. To facilitate our mapping, we parameterize the embedding space of the base level set surface using fast particle advection. We can then warp explicit texture meshes onto this surface at nearly interactive speeds or blend level set representations of the texture to produce high-quality surfaces with smooth transitions.  相似文献   

19.
A topology preserving level set method for geometric deformable models   总被引:14,自引:0,他引:14  
Active contour and surface models, also known as deformable models, are powerful image segmentation techniques. Geometric deformable models implemented using level set methods have advantages over parametric models due to their intrinsic behavior, parameterization independence, and ease of implementation. However, a long claimed advantage of geometric deformable models-the ability to automatically handle topology changes-turns out to be a liability in applications where the object to be segmented has a known topology that must be preserved. We present a new class of geometric deformable models designed using a novel topology-preserving level set method, which achieves topology preservation by applying the simple point concept from digital topology. These new models maintain the other advantages of standard geometric deformable models including subpixel accuracy and production of nonintersecting curves or surfaces. Moreover, since the topology-preserving constraint is enforced efficiently through local computations, the resulting algorithm incurs only nominal computational overhead over standard geometric deformable models. Several experiments on simulated and real data are provided to demonstrate the performance of this new deformable model algorithm.  相似文献   

20.
Realistic behavior of deformable objects is essential for many applications such as simulation for surgical training. Existing techniques of deformable modeling for real time simulation have either used approximate methods that are not physically accurate or linear methods that do not produce reasonable global behavior. Nonlinear finite element methods (FEM) are globally accurate, but conventional FEM is not real time. In this paper, we apply nonlinear FEM using mass lumping to produce a diagonal mass matrix that allows real time computation. Adaptive meshing is necessary to provide sufficient detail where required while minimizing unnecessary computation. We propose a scheme for mesh adaptation based on an extension of the progressive mesh concept, which we call dynamic progressive meshes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号