首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Reduction of leakages in water distribution system (WDS) is one of the major concerns for water industries. This paper presents a hybrid leakage reduction model using pressure management technique, performed by optimizing water storage level in the tank, along with optimized control and localization of pressure reducing valve (PRV) in water distribution system. Pattern Sequence-based Forecasting (PSF) algorithm is used for prediction of flow rate (demand) from the tank for next 48 h, to calibrate the future desire water storage level in the tank. A mathematical tank and pump simulation algorithm is proposed for optimization of water storage level in the tank. A modified reference pressure algorithm is proposed for efficient localization of pressure reducing valve. Multiobjective genetic algorithm (NSGA-II) is used for finding out the optimized operational control setting of the pressure reducing valve for leakage minimization. The proposed algorithm leads to better leakage reduction of 20.81% in modified benchmark WDS, with a reduced number of the pressure reducing valves. Constraints such as maintaining lower hydraulic failure index (<0.01), emergency water storage, etc. is also considered. It can be concluded that the proposed hybrid leakage reduction technique provides efficient as well as cost-effective solution for leakage control.  相似文献   

2.
Water distribution networks are high energy and low efficiency systems, where water pressure is frequently reduced by dissipation valves to limit leakage. The dissipation produced by the valves can be converted to energy production to increase the efficiency and reduce the energy impact of networks. If valves are replaced by turbines or pumps as turbines (PATs), they can both reduce pressure and produce energy. This study focuses on the optimal location of PATs within a water distribution network in order to both produce energy and reduce leakage. A new optimization model is developed consisting of several linear and non-linear constraints and a newly proposed objective function, where the turbine installation costs as well as the energy production and the economic saving due to the reduction of leakage can be accounted all together. The case study shows that the application of the mathematical model to a synthetic network ensures better results, in terms of both energy production and water saving, in comparison to other procedures.  相似文献   

3.
Leakages result in considerable loss of water in water pipe networks. Therefore it is an important issue to detect leakage amount and its approximate location. Leakages in water distribution system are directly related to the operating pressure. In the current study, a new model is proposed for leakage amount and location detection and it is applied into two benchmark water distribution networks. In the proposed method, the water distribution networks are divided into three pressure zones in order to consider the leakage differences in different operating pressures. Then, nodal pressures and demands are calibrated using a new multi objective ant colony based optimization model. In this method, leaks are simulated as extra nodal demands. For determining the nodes where leakage happens, a probability based scheme is used. The leakage occurrence probability varies depending on the pressure zone that each node is located. The results illustrate the applicability of the proposed model for detecting the leakages in water distribution systems.  相似文献   

4.
通过对给水管网实测计量小区(DMA)的夜间流量数据进行解析,可以及时获得近似的真实漏损数值。利用大频率、高精度的夜间实测流量数据进行分析,发现夜间不同时段DMA流量近似满足正态分布,其最小值近似接近真实漏损。根据某案例凌晨2∶00-4∶00夜间最小流量数据,采用置信水平95.5%、置信区间(μ-2δ,μ+2δ)进行了分析。结果表明,利用μ-2δ表征剔除异常值后的DMA最小流量,可以消除实测数据的误差和干扰影响,来得出小区的真实漏损水量。这种方法可减少对用户夜间用水估计产生的误差,也可便利地通过流量设备进行现场计量,从而快速评估DMA的夜间漏失水平  相似文献   

5.
Diffuse nutrient loads are a common problem in developed and agricultural watersheds. While there has been substantial investment in best management practices (BMPs) to reduce diffuse pollution, there remains a need to better prioritize controls at the watershed scale as reflected in recent US-EPA guidance for watershed planning and Total Maximum Daily Load development. We implemented spatial optimization techniques among four diffuse source pathways in a mixed-use watershed in Northern Vermont to maximize total reduction of phosphorus loading to streams while minimizing associated costs. We found that within a capital cost range of 138 to 321 USD ha-1 a phosphorus reduction of 0.29 to 0.38 kg ha?1 year?1, is attainable. Optimization results are substantially more cost-effective than most scenarios identified by stakeholders. The maximum diffuse phosphorus load reduction equates to 1.25 t year?1using the most cost-effective technologies for each diffuse source at a cost of $3,464,260. However, 1.13 t year?1 could be reduced at a much lower cost of $976,417. This is the practical upper limit of achievable diffuse phosphorus reduction, above which additional spending would not result in substantially more phosphorus reduction. Watershed managers could use solutions along the resulting Pareto optimal curve to select optimal combinations of BMPs based on a water quality target or available funds. The results demonstrate the power of using spatial optimization methods to arrive at a cost-effective selection of BMPs and their distribution across a landscape.  相似文献   

6.
Soil Water Distribution and Movement in Layered Soils of a Dam Farmland   总被引:3,自引:1,他引:2  
In soil profiles, special emphasis has been placed on the migration of agricultural chemicals spread intentionally or accidentally into deep soils or groundwater body. To prevent soil water pollution and estimate the magnitude of the hazard caused by these chemicals, it is necessary to know the processes controlling their movement from the soil surface, through the root zone and eventually to the water table. This paper deals with two-dimensional soil water distribution and movement in sloping layered soils of a dam farmland on the Loess Plateau of China. In the dam farmland, soil water content showed horizontal distribution corresponding to spatial patterns of the particle sizes. The soil water content of deeper soil was relatively stable compared with topsoil. Generally, rainfall infiltration was limited to 0.8 m in the study period. Funnel flows were found in the layered soils of the dam farmland after rainfall proving the existence of this phenomenon which was observed in simulation experiments and field observation by previous researches. In the study area, the wetting front was unstable due to the layered soils. The spatial correlation analysis of the soil water content showed water movement along the layers in the wetting process with 7 m day???1 only on the first day after rainfall. On the vertical direction, the velocity of water movement was 0.3 m day???1 on the first day after rainfall. The results indicated that the quantity of funnel flow increases with distance along the inclined interfaces in the dam farmland which can cause contamination of groundwater. Consequently, future studies should consider the funnel flow and the management of agriculture chemicals in dam farmlands.  相似文献   

7.
The success of hydraulic simulation models of water distribution networks is associated with the ability of these models to represent real systems accurately. To achieve this, the calibration phase is essential. Current calibration methods are based on minimizing the error between measured and simulated values of pressure and flow. This minimization is based on a search of parameter values to be calibrated, including pipe roughness, nodal demand, and leakage flow. The resulting hydraulic problem contains several variables. In addition, a limited set of known monitored pressure and flow values creates an indeterminate problem with more variables than equations. Seeking to address the lack of monitored data for the calibration of Water Distribution Networks (WDNs), this paper uses a meta-model based on an Artificial Neural Network (ANN) to estimate pressure on all nodes of a network. The calibration of pipe roughness applies a metaheuristic search method called Particle Swarm Optimization (PSO) to minimize the objective function represented by the difference between simulated and forecasted pressure values. The proposed method is evaluated at steady state and over an extended period for a real District Metering Area (DMA), named Campos do Conde II, and the hypothetical network named C-town, which is used as a benchmark for calibration studies.  相似文献   

8.
To evaluate non revenue water (NRW) and losses in water distribution networks a methodology is developed by applying “annual water balance” and “minimum night flow” analyses. In this approach the main NRW components such as leakage from reported and un-reported bursts and background leakage, with real or estimated data, enabling assessment of indices of leakage performance are evaluated. Also, a novel procedure is introduced in this paper that can determine the nodal and pipe leakage by using a hydraulic simulation model. Recognising the pressure dependency of leakage the total consumption is divided into two parts, one pressure dependent and the other independent of local pressure, and the hydraulic behaviour of the network is analyzed. A computer code is developed to evaluate all components of water losses based on the proposed methodology. For better representation of the results and management of the system, the outputs are exported to a GIS model. Using the capabilities of this GIS model, the network map and attribute data are linked and factors affecting network leakage are identified. In addition, the effects of pressure reduction are investigated. The model is illustrated by a real case study. The results show that the suggested model has overcome the shortcomings of the existing methodologies by accounting for the leakage and other NRW components in water distribution networks more realistically.  相似文献   

9.

Four pressure control modes (CMs) for water distribution systems, which are: 1) fixed control (FC); 2) time-based control (TBC); 3) reactive control (RC); and 4) ideal predictive control (IC), are compared based on their performance in terms of reduction in i) leakage rate and ii) pressure fluctuation intensity. The comparison is performed for three real Canadian distribution networks. Pressure fluctuation intensity, pressure variations distribution, and leakage rate reduction are the performance indices computed for each CM. The impact of differences in elevation and pipe roughness are also assessed. It is shown that in all cases, the active CMs (IC and RC) are more effective than the passive ones (TBC and FC). A decrease in water loss and in pressure fluctuation intensity was obtained when adopting CMs other than FC. The highest benefits were provided by IC, followed by RC and TBC (e.g. reduction in leakage rates lower than 4% for TBC and up to 26% for IC and RC, compared with the fixed control mode). The benefits of active CMs are higher when the difference in nodes elevation is lower and when the pipe roughness is greater, both cases amplifying the relative impact of pipe friction on the pressure delivered to each node in the system.

  相似文献   

10.
Minimum night flow (MNF) is a common method used to evaluate water loss in a water network. In 2010, the average percentage of non-revenue water for the state of Perak in Malaysia was 29.4 %, a figure which resulted in major financial, supply, and pressure losses, as well as excessive energy consumption. In this study, a statistical analysis of the water distribution network and a modeling of MNF were carried out to estimate water loss in Kinta Valley, Perak. Flow and pressure for 361 zones were monitored for 24 h using PrimeWorks software (version: 1.5.57.0). Thirty study zones were randomly selected from 361 zones. MNF was screened within the time band of 1:00 am to 5:00 am. A total of 20 factors for physical, hydraulic, and operational variables were selected and correlated with MNF (L/s). Multiple linear regression was used as a statistical technique to determine factors that contributed to MNF (L/s). Consequently, pipe length (m) and pipe age (year) were the main contributors to MNF (L/s). The statistical model was finalized with R-Sq 0.706 and then improved to R-Sq 0.779. Results of the study revealed that 84.9 % of MNF frequencies for the 30 study areas were found at the time band 2:15 am to 4:15 am; therefore, the mean MNF for each zone in 2010 was determined to be between 1:00 am and 5:00 am. Statistical analyses showed that number of connections, total length of pipe, weighted mean of age of pipe, and type of pipe (100 mm asbestos cement) contributed to MNF. Moreover, approximately 97.5 % of registered repairs were conducted on pipes with small diameters of less than or equal to 50 mm. Pipes within this size range are usually used as service pipes and service connections.  相似文献   

11.
The water footprint (WF) of crop production is a comprehensive indicator that can reflect water consumption types, quantities and environmental impacts during the crop growth period. This study assesses interannual variability of green, blue and grey WFs of maize production in Beijing from 1978 to 2008. Results indicate that: (1) The multi-year average WF of maize was 1,031 m3 ton?1 which was 56 % green, 25 % blue, and 19 % grey; (2) the climate experienced a warm-dry period in Beijing during the period from 1978 to 2008, and this lead to the increase of crop water requirement and irrigation water requirement for maize with trends of 0.52 mm a?1 and 2.86 mm a?1, respectively; (3) under the combined effects of climate change and agricultural inputs, the total WF and green WF presented decreasing trends. The blue and grey WFs had clear increasing trends; (4) statistical analysis revealed that interannual variability of green and blue WFs were caused by both climatic factors (effective precipitation) and non-climatic (agricultural inputs) factors. The grey WF was mainly associated with non-climatic factors, such as chemical fertilizers consumption.  相似文献   

12.
The objective of this article is to assess the potential for potable water savings in office buildings located in Florianópolis, southern Brazil. The embodied energy of four alternatives to reduce potable water demand, i.e., rainwater harvesting, greywater reuse, dual-flush toilets and water-saving taps, was also assessed. The analyses took into account the potable water end-uses for ten buildings. The potential for potable water savings by using rainwater, as well as, the rainwater tank sizing were estimated using computer simulation. As for greywater reuse, it was considered that greywater from lavatory taps could be treated and reused to flush toilets. The potential for potable water savings by using water-saving plumbing fixtures was estimated by considering the replacement of toilets and taps. In order to estimate the embodied energy in the main components, each system was dimensioned and embodied energy indices were applied. The main result is that the potential for potable water savings by using dual-flush toilets ranges from 21.6 % to 57.4 %; by reusing greywater, it ranges from 6.8 % to 38.4 %; by using rainwater, it ranges from 6.1 % to 21.2 %; by using water-saving taps it ranges from 2.7 % to 15.4 %. However, by considering the embodied energy, the average for the ten buildings indicates that dual-flush toilets are the best choice as it is possible to obtain water savings of 5.50 m3/month per GJ of embodied energy, followed, respectively, by water-saving taps, greywater reuse and rainwater usage. The main conclusion is that the assessment of embodied energy should be considered when evaluating potable water savings in buildings as it helps to identify the best alternatives to save more water while causing less environmental impact.  相似文献   

13.
Shallow water table levels can be predicted using several approaches, either based on climatic records, on field evidences based on soil morphology, or on the outputs of physically based models. In this study, data from a monitoring network in a relevant agricultural area of Northern Italy (ca. 12,000 Km2) were used to develop a data driven model for predicting water table depth in space and time from meteorological data and long-term water table characteristics and to optimize sampling density in space and time. Evolutionary Polynomial Regressions (EPR) were used to calibrate a predictive tool based on climatic data and on the records from 48 selected sites (N?=?5,611). The model was validated against the water table depths observed in 15 independent sites (N?=?1,739), resulting in a mean absolute error of 30.8 cm (R 2?=?0.61). The model was applied to the whole study area, using the geostatistical estimates of the average water table depth as input, to provide spatio-temporal maps of the water table depth. The impact of the degradation of data input in the temporal and spatial domain was then assessed following two approaches. In the first case, three different EPR models were calibrated based on 25 %, 50 % and 75 % of the available data, and the error indexes compared. In the second case, an increasing number of monitoring sites were removed from the initial data set, and the associated increased kriging standard deviation was assessed. Reducing the average sampling frequency from 1.5 per month to 1 every 40 days did not impact significantly on the prediction capability of the proposed model. Reducing the sampling frequency to 1 every 4 months resulted in a loss of accuracy <3 %, while removing more than half locations from the network, resulted in a global loss of information <15 %.  相似文献   

14.

A significant amount of energy is required to operate pressurised water distribution systems, and therefore, improving their efficiency is crucial. Traditionally, more emphasis has been placed on operational losses (pumping inefficiencies, excess leakage or friction in pipes) than on structural (or topographic) losses, which arise because of the irregular (unchangeable) terrain on which the system is located and the network’s layout. Hence, modifying the network to adopt an ecologically friendly layout is the only way to reduce structural losses. With the aim of improving the management of water distribution systems and optimising their energy use, this work audits and classifies water networks’ structural losses (derived from topographic energy), which constitutes the main novelty of this paper. Energy can be recovered with PATs (pumps as turbines) or removed through PRVs (pressure reducing valves). The proposed hydraulic analysis clarifies how that energy is used and identifies the most suitable strategy for improving efficiency as locating the most suitable place to install PRVs or PATs. Two examples are discussed to illustrate the relevance of this analysis.

  相似文献   

15.
A proper division of a Water Distribution System (WDS) into District Metered Areas (DMAs) provides important management benefits particularly with regard to leakage detection through water balances, control and optimization of pressure so as to reduce leakage, implementation of monitoring, warning and emergency acting systems against accidental or intentional water contamination. This paper presents a new methodology that combines a suitable modularity-based algorithm for the automated creation of DMA boundaries and convincing practical criteria for the DMA design. A further plus of the proposed methodology is its ability to identify many technically feasible solutions that can be subsequently economically assessed. The successful applications of the proposed methodology to a real case study, already tested by other authors, has proven its effectiveness for the DMA design in existing water distribution systems.  相似文献   

16.
MATLAB? software named PRESUD (Pressurized Subunit Design) was developed to identify the optimum solid set sprinkler irrigation subunit design with a criterion of minimizing the annual water application cost (CT). This CT is defined as the cost per cubic meter of water applied to the soil for crop use. In this study, only rectangular subunits are considered, using an iterative method for calculating the lateral and manifold pipelines. The results indicate that water cost (Cw), which includes the investment and operation costs for pumping water from the source to the subunit inlet, makes up 75 % of CT. Another important factor is energy cost, which comprises 14 % of CT. The remaining variables, such as sprinkler spacing and layout, or application rate (ARa), have a lower impact on CT. In cases of use groundwater, the proportion of energy cost in CW can reach 40 %; thus, energy is an important part of CT. Results shows that the criterion of limiting the maximum difference in pressure heads in the irrigation subunit (Δh?T, and the use of tools such as PRESUD can help obtain better solutions.  相似文献   

17.
Trans-jurisdictional conflict in both water quantity and quality is a general concern in large river basins. In this paper, the relative utility function combined with the asymmetric Nash bargaining method was established to analyze the trans-jurisdictional conflict between water quantity and water quality in the Zhangweinan Canal Basin in China. The basin was divided into four conflict stakeholders, namely, Shanxi, Hebei, Henan, and Shandong Provinces, based on administrative unit. The water usage and pollutant discharge scheme for multiple stakeholders was optimized using the established model to satisfy the environmental flow and water quality objectives at the identified conflict sections. The results indicated that the total water consumption was reduced from 4.38?×?109?m3 in 2007 to 1.97?×?109?m3, and that the allowable COD and NH3-N discharged into the river was less than 3.8?×?104?t and 4.3?×?103?t, respectively. About 81.1 % of COD and 76.1 % of NH3-N should be further reduced compared with the values in 2007.  相似文献   

18.
Network sectoring is one of the most effective measures to reduce energy consumption in pressurized irrigation networks. In this work, the previous model focused on the irrigation networks sectoring with several supply points (WEBSOM), which considered the simultaneous operation of all hydrants, has been improved by integrating an analysis of multiple random demand patterns and their effects on variability in hydrant pressure (extended WEBSOM). The extended WEBSOM has implied a multiobjective optimization, followed by a Montecarlo procedure to analyze different flow regimes using quality of service indicators, a novelty for multi-source pressurized irrigation networks. This innovation has involved energy savings ranging from 9 to 15 % with respect to the consideration of the concurrent operation of all hydrants, which rarely occurs in on-farm irrigation systems. These energy savings were associated with maximum values of pressure deficit of 21 and 34 % in the most critical hydrant with a deficit frequency of 27 and 36 % in the peak month. However, smaller and less frequent deficits were achieved in the rest of the months. Thus, substantial energy savings can be obtained in irrigation districts without significant losses in the service quality provided to farmers.  相似文献   

19.
The modernization processes of hydraulic infrastructures from old open channels to pressurized networks have increased water use efficiency along with a dramatic increase of energy consumptions. The significant energy requirements associated with the increment of the energy tariffs for irrigation involve higher production costs for farmers. Therefore, strategies to reduce energy consumption in irrigation districts are strongly demanded. Methodologies based on sectoring and critical points control have been applied to branched networks with a single water supply point, obtaining significant energy savings. In this work, a new critical point control methodology for networks with multiple sources has been developed: the WEPCM algorithm, which uses the NSGA-II multi-objective evolutionary algorithm to find the lowest energy consumption operation rule of a set of pumping stations connected to an irrigation network that satisfies the pressure requirements, when the critical points are successively disabled. WECPM has been applied to a real irrigation district in Southern Spain. The obtained results were compared with those achieved by the WEBSOM algorithm, developed for sectoring multiple source networks. The control of critical points by the replacement of two pipes and the installation of four booster pumps provided annual energy savings of 36 % compared to the current network operation. Moreover, the control of critical points was more effective than sectoring, obtaining an additional annual energy saving of 10 %.  相似文献   

20.
Understanding temporal variability in water quality in the Three Gorges Reservoir (TGR) is crucial for evaluating environmental effects of damming and protecting China’s largest freshwater resource. This study examined water quality changes in the main channel of the Yangtze River after dam completion as well as its relationship with water level fluctuation (WLF), controlled by annual impoundment operations and conditioned by flooding. Finally, the mass balance budget and integrative water quality indexing (WQI) methods were applied to elucidate the status of overall water quality since dam completion. Results showed that TGR outlet water (Yichang) exhibited higher pH and CODMn values and lower concentrations of dissolved oxygen (DO) and ammonia nitrogen (NH3-N) than inlet water (Zhutuo). Temporal variations in water quality parameters displayed similar trends for the outlet and inlet. Water quality parameters all showed negative correlations to water level, revealing the different effects of damming on water quality. It was estimated that reservoir impoundment led to a DO depletion of 1495.5 (±1482.0)?×?103 tons/yr and a CODMn increase of 564.0 (±405.0)?×?103 tons/yr, likely deriving from various internal pollutant loads from the WLF zone and tributary watersheds. According to WQI, TGR water quality remained at healthy levels. However, WQI linear regression showed that water quality at the outlet significantly decreased over time, indicating that the construction of the Three Gorges Dam generally caused water quality deterioration. Further investigation is required to determine the spatial distribution of point and non-point pollution sources and to identify major factors that influence TGR water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号