首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
40Cr钢离子渗氮层ε相转变机理研究   总被引:3,自引:0,他引:3  
借助X射线分析方法,研究了40Cr钢经不同时间渗氮处理后渗氮层ε相的形成以及经不同氨流量和温度渗氮后的改变 。结果表明,在渗氮温度和氨流量相同的条件下,渗氮层深度和ε相体积分数随氮时间的延长而增加,在一定时间后,渗氮层深度增加缓慢,相组成几乎不再随渗氮时间变化。调整渗氮温度和氨流量,通过渗氨温度和气氛氮势的变化,可有效地控制渗氮层形成和转变,以加快离子渗氮速度。  相似文献   

2.
彭甜甜  林超林  陈尧  王辉  胡静 《表面技术》2020,49(8):172-177
目的探索化合物层物相与耐磨性的关系,并实现其有效调控,从而满足不同零部件的服役性能要求。方法选用常用渗氮钢38Cr Mo Al进行不同氮气比(15%、20%、25%)离子渗氮研究,渗氮温度为510℃,保温4 h。采用光学显微镜、X射线衍射仪、显微硬度计和摩擦磨损试验机对渗氮后的显微组织、物相组成、截面硬度、耐磨性进行了测试和分析。结果在相同的渗氮温度下,调节氮气比可获得不同物相组成的化合物层。在渗氮温度510℃下,氮气比为20%时满足形成γ'相的临界氮势,从而得到γ'单相化合物层。氮气比达到25%时,满足形成ε相的临界氮势,渗氮层中γ'相形成,并动态转变成ε相,使ε相逐渐增多,形成ε+γ双相化合物层。结论 38CrMoAl经不同氮气比离子渗氮后形成了ε+γ'双相化合物层,在较小磨损载荷(200 g)下,具有更优的耐磨性。但在较大磨损载荷(400 g)下,氮气比20%获得的γ'单相化合物层试样磨痕较窄,摩擦系数较小,即在较大磨损载荷下,γ'单相化合物层比ε+γ'双相化合物层表现出更加优异的耐磨性能。该研究可为不同磨损服役条件的零部件离子渗氮工艺设计提供参考。  相似文献   

3.
研究了调质态1Cr12Ni3MoVN钢在580℃、氨分解率30%~70%条件下,气体渗氮4、8、16和32 h渗氮层的组织结构和性能。利用OM、SEM、EDS和XRD对渗氮层的显微组织、表面相结构、磨痕形貌等进行表征,并对渗氮层的显微硬度及摩擦磨损性能进行测试。结果表明,渗氮层组织致密均匀,包括化合物层、中间扩散层和过渡层,表层主要由ε-Fe_(2-3)N相和γ'-Fe_4N相组成,并含有少量CrN化合物;随渗氮时间延长,渗氮层厚度近似呈抛物线规律增加,但表面硬度降低。经渗氮后钢的耐磨性大幅度提高,表面仅呈现轻度磨损。  相似文献   

4.
常用冷作模具钢的气体渗氮与耐磨性研究   总被引:4,自引:0,他引:4  
研究了9种常用冷作模具钢的气体渗氮层结构和渗氮速度,对比了不同材料渗氮层的耐磨性。结果表明,高速钢和基体钢渗氮层表面不易形成ε相。这三类高合金钢制的模具,均可利用气体渗氮提高耐磨性,且以Cr12MoV钢气体渗氮后的耐磨性最佳;低合金钢模具,不能用气体渗氮提高耐磨性。  相似文献   

5.
采用不同的回火温度、渗氮温度和N2与H2的比例,对35CrMo钢进行热处理,通过正交试验分析这些参数对渗氮层耐蚀性的影响。结果表明,最佳的耐蚀性热处理工艺为回火温度550℃、渗氮温度540℃、氮气与氢气流量比为1∶5。XRD分析表明白亮层组织以γ’相为主,并含一定量的α-Fe(N)和ε相,这种组织有很好的耐蚀性,且具有较小的的脆性。  相似文献   

6.
研究了经不同加热温度锻造、固溶和750℃时效后钢的晶粒度、孪晶、碳化物的分布及纯氨和氨加氩做介质离子渗氮后渗层组织、相组成、应力状态、氮碳浓度分布、剥落坑形貌。分析表明:纯氨离子渗氮后表面层的碳向里扩散,并出现一峰值:氨加氩渗氮降低了渗层中氮浓度,从而降低了渗层中的应力,这是消除该钢渗氮层剥落的有效途径。  相似文献   

7.
38CrMoAl钢离子渗氮微观结构的研究   总被引:5,自引:0,他引:5  
周上祺  侯琼  任勤 《金属热处理》2002,27(10):10-12
为了研究38CrMoAl钢渗氮层的微观结构和Al在钢中的作用,用X射线衍射对比分析了38CrMoAl钢和32Cr2MoVA钢。结果表明,38CrMoAl钢中Al的分布极不均匀,使ε相在各个微区的点阵常数不同,并出现一些波长不同的调幅结构。  相似文献   

8.
38CrMoAlA、40Cr钢经不同渗氮工艺处理后的性能研究   总被引:3,自引:2,他引:3  
研究了38CrMoAlA和40Cr钢经气体渗氮、气体氮碳共渗、离子渗氮处理后渗氮层的组织、硬度、摩擦磨损和腐蚀性能。试验结果表明,38CrMoAlA钢渗氮层的硬度及在3.5%NaCl溶液中的耐蚀性能高于40Cr钢,但抗摩擦磨损性能不如40Cr钢。依气体渗氮、气体氮碳共渗到离子渗氮的顺序,渗氮层的抗磨损性能逐次提高,但抗腐蚀能力逐次降低。从钢的化学成分、渗氮层的硬度和韧性出发,对38CrMoAlA和40Cr钢渗氮层的性能差异进行了分析与总结。  相似文献   

9.
预喷丸对H13钢气体渗氮行为的影响   总被引:2,自引:0,他引:2  
采用质量增量分析、剖面金相分析和显微硬度测量等方法研究了预喷丸处理对H13钢气体渗氮动力学与渗氮层性能的影响。结果表明,预喷丸处理对H13钢气体渗氮有明显的催渗作用,这种催渗作用在白亮层尚未形成的渗氮初期最为明显,随着渗氮温度升高,预喷丸处理的催渗效果显著提高。试验数据还表明,预喷丸催渗所增加的氮原子一方面使渗氮层加深;另一方面使扩散层固溶氮浓度和/或氮化物沉淀相密度提高。测量表明,预喷丸催渗条件下形成的渗氮层的硬度明显高于普通气体渗氮。  相似文献   

10.
在氨气气氛下对C422 (22Cr12NiMoWV)钢进行两段式气体渗氮,并研究了渗氮层的显微组织结构以及渗氮后C422钢的室温及高温力学性能,评价渗氮对该钢缺口敏感性的影响。结果表明:C422钢的渗氮层具有三层结构:表层为主要由Fe3N、Fe4N和CrN构成的化合物层,中间层为致密的α-Fe(N)扩散层,内层为α-Fe(N)相扩散进入钢基体而形成的过渡层。与未渗氮试样相比,随着渗氮时间延长,有无缺口C422钢渗氮试样的室温、高温拉伸强度和伸长率单调下降,屈服强度先增大后减小。渗氮层的断裂模式为解理断裂的脆性断裂。气体渗氮导致C422钢的室温缺口敏感性增大,但对其高温缺口敏感性影响不大。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号