首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对高炉渣制备矿渣棉的调质过程,研究碱度对高炉渣黏度和熔化性温度的影响规律。根据矿渣棉的基本成分,在熔融高炉渣中添加适量调质剂调整其化学成分,并加热混匀。研究结果表明,采用化学纯试剂对高炉渣进行调质时,碱度升高使得熔渣黏度向短渣特性进一步转化,熔化性温度升高,不利于熔渣流动性的提高;碱度对调质高炉渣表面张力的影响不显著;制备矿渣棉适宜的碱度为1.0。  相似文献   

2.
为了改善矿渣棉纤维质量,采用铁尾矿对高炉渣进行调质,研究酸度系数对调质高炉渣黏度、熔化性温度和矿物组成的影响规律,并在此基础上采用离心试验证实了改变酸度系数能够优化纤维质量。结果表明:随着铁尾矿添加比例的升高,调质高炉渣的酸度系数Mk增加,调质高炉渣熔化性温度先降低后升高,熔化性温度对应的黏度值逐渐增加,调质高炉渣中不再有矿物析出,熔渣凝固后全部为非晶相。说明高炉渣开始由短渣特性转变为长渣特性,且在符合矿渣棉成纤黏度条件下,熔渣黏度变化趋于平缓,因此对高炉渣进行调质可以拓宽成纤温度区间范围,易于高炉渣纤维化控制;且酸度系数Mk提高,进一步可以改善纤维直径,提高纤维的使用性能。  相似文献   

3.
分析了铁尾矿配比对矿渣成分设计参数的影响规律,采用高温熔体物性综合测定仪测定熔渣黏度、流动性等高温物化性能.采用主成分分析法和多元线性回归原理,建立了主成分与熔渣流动性的数学模型.研究结果表明:调质高炉渣的成分设计参数更符合制取矿渣棉原料的要求;随着铁尾矿配比增加,熔渣黏度有升高的趋势,但高温区黏度较小、流动性较好,适宜的成纤温度区间变宽,调质高炉熔渣黏度、流动性更适合用于制备矿渣纤维;调质高炉熔渣适宜的酸度系数为1.2~1.4,即铁尾矿适宜的质量分数为5%~15%.  相似文献   

4.
邯 钢 高 炉 渣 的 熔 化 性 能   总被引:1,自引:0,他引:1  
 根据邯钢目前高炉的冶炼条件,以现场渣为基准,研究了炉渣碱度、MgO、Al2O3和TiO2含量对炉渣熔化性能的影响。结果表明,随碱度增加,炉渣粘度和熔化性温度先下降后提高。较高的MgO含量可降低炉渣粘度和熔化性温度,提高炉渣流动性。随渣中Al2O3含量增加,炉渣流动性变差。渣中TiO2含量对炉渣粘度和熔化性温度影响不明显。本试验条件下,合理的炉渣组成为:二元碱度为110~115,MgO含量为1119%左右,Al2O3含量为1439%左右,TiO2含量可根据现场原料变化情况而定。  相似文献   

5.
高铝炉渣熔化性温度的研究   总被引:1,自引:0,他引:1  
由于矿石资源的变化,武钢高炉炉渣中Al2O3含量从原来的14%左右上升到16%左右,渣型结构发生了很大的变化。通过对高炉高Al2O3炉渣熔化性温度的试验研究,分析了炉渣中MgO含量、Al2O3含量及二元碱度RO对炉渣熔化性温度的影响以及配加CaF2后熔化性温度的变化。结果表明:Al2O3含量每增加1%时,炉渣熔化性温度平均提高4.4℃;MgO含量对熔化性温度的影响不大;二元碱度RO每增加0.05时,炉渣熔化性温度平均提高8℃;在炉渣中配加了CaF2后,Al2O3含量的变化对炉渣的熔化性温度影响较小。  相似文献   

6.
结合京唐高炉的生产实际,通过对京唐现场炉渣的取样和实验室分析,对京唐高炉渣的冶金性能进行评价,其炉渣的热稳定性及流动性均符合高炉冶炼要求。通过黏度试验研究,考察Al2O3以及二元碱度对低镁条件下炉渣黏度和熔化性温度的影响。试验结果表明,炉渣黏度随渣中Al2O3质量分数的增加而升高,随二元碱度的增加呈先降低后增加的趋势;炉渣的熔化性温度随渣中Al2O3质量分数和二元碱度的增加而升高;为保证低镁炉渣具有良好的流动性,当炉渣中MgO的质量分数保持为4.0%时,二元碱度可控制为1.19左右,Al2O3的质量分数控制为16%以下。  相似文献   

7.
根据宣钢高炉冶炼条件采用RTW熔体物性测定仪,并以现场含钛高炉渣为基准,进行炉渣的黏度试验;研究不同的碱度、MgO和Al2O3含量对低钛高炉渣流动性能的影响。结果表明:试验用4种不同碱度炉渣黏度η-T曲线具有短渣特性,随炉渣碱度升高,炉渣η-T曲线短渣特性增强;在相同温度条件下炉渣黏度基本随碱度的升高而降低;MgO在一定范围内能起到降低炉渣黏度的作用,但MgO含量超过11%时,炉渣黏度随MgO含量的升高而增大;在试验条件下,低钛炉渣Al2O3含量对炉渣流动性质影响较小,生产中炉渣温度应保证在1400℃以上,炉渣Al2O3含量可以适当选高。  相似文献   

8.
在实验室条件下,研究高炉渣中MgO及Al2O3质量分数对高炉渣冶金性能的影响规律。试验结果表明,当高炉渣碱度为1.1、MgO质量分数为12%不变时,随着Al2O3质量分数的增加,高炉渣熔化性温度逐渐增加,且当Al2O3质量分数超过17.5%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐增加而渣铁硫分配比降低;当高炉渣碱度为1.1、Al2O3质量分数为20%不变时,随着MgO质量分数的增加,熔化性温度先降低后增加,当MgO质量分数超过11.8%时,高炉渣初晶相由黄长石区域转变成尖晶石区域,而且在1500℃时,高炉渣黏度逐渐降低而渣铁硫分配比增加。  相似文献   

9.
康月  刘超  张玉柱 《中国冶金》2021,31(5):127-131
干式粒化法能够克服传统高炉渣处理方法水淬法带来的一系列问题,气淬喷吹法作为一种有前途的干式处理方法在显著回收高炉渣显热的同时能够提高炉渣利用附加值。为了研究高炉渣作为气淬喷吹原料的可行性,通过对高炉渣进行不同碱度的调质,研究高炉渣的流动性、表面张力和结晶行为,并分析熔渣物理特性对粒化效果的影响。结果表明,高温下碱性渣的黏度要小于酸性渣,而且当碱度大于1.0后,高温区黏度值基本保持在1 Pa·s以下不易成纤区间,这更有利于熔渣破碎成珠,但超过1.3后,黏度有增加趋势,同时熔化性温度急剧增加,所以碱度不易过大;高炉渣表面张力随碱度的增加逐渐增加,有利于提高渣珠规则度;玻璃体随碱度的增加逐渐减少,不利于提升渣珠的物相品质。  相似文献   

10.
高炉高铝低钛渣的熔化性   总被引:1,自引:0,他引:1  
在Al2O3的质量分数为15.14%~18.14%,TiO2的质量分数为2%~5%的范围内研究了普通高炉渣的熔化特性。应用正交试验方法,以水钢现场高炉渣为主要原料,适当配加分析纯的Ca(OH)2、MgO、SiO2、Al2O3和TiO2化学试剂调整炉渣的组成成分,采用炉渣熔化特性测试仪半球点法测定炉渣的熔化温度。试验结果表明:渣中碱度和Al2O3含量增加,炉渣熔化性温度升高;TiO2含量增加,炉渣的熔化性温度明显下降;适当提高渣中TiO2和MgO含量可避免因Al2O3含量升高而引起的熔化性温度上升;炉渣的熔化性温度在1 320~1 400℃之间,熔化性良好。  相似文献   

11.
 The slag melting characteristic of slag forming and slag splashing for 300 t BOF less slag process is researched by combining the methods of the slag chemical composition, the melting point determination and the petrographic analysis. The results show that the melting point of final slag for less slag smelting is 20 ℃ lower than that for conventional smelting. According to results of the petrographic analysis, the C3S (3CaO·SiO2) and C2S (2CaO·SiO2) content for less slag smelting are lower than those for conventional smelting, while the RO (FeO, MgO, MnO, etc) phase and C4AF (4CaO·Al2O3·Fe2O3) phase are higher than those for conventional smelting. According to results of the chemical analysis, the (CaO) content and slag basicity for less slag smelting are higher than those for conventional smelting, while (FeO) and (MgO) content in slag for less slag smelting are almost equal to those for conventional smelting. The reason why slag melting point for less slag smelting is lower than that for conventional smelting is that the quantity of added fluorite for less slag smelting is more than that for conventional smelting. According to the analysis results the slag melting point is determined by the C3S, C2S, RO phase and C4AF content. According to the results of slag melting characteristic before and after slag splashing for less slag smelting, the present adjusting slag process has little effect. It is important to adjust the composition of BOF final slag. The (FeO) content in slag is to be reduced at the slag splashing and adjusting slag process for less slag smelting.  相似文献   

12.
含钛高炉渣制备钛渣的工艺研究   总被引:1,自引:0,他引:1  
高钛型高炉渣中的TiO2含量达20%~23%,是宝贵的二次资源。利用TiO2对盐酸的稳定性,将炉渣中的酸溶性物质酸解后固液分离得到钛渣,并分析原料粒度、酸渣比、反应温度、反应时间对钛渣中TiO2含量的影响,得到较佳的酸解反应条件。通过XRD图谱分析可知,高炉渣中A l,Mg,Fe等元素的化合物物相均已完全酸解,产品钛渣中TiO2含量达48%以上。该工艺为综合利用高钛型高炉渣提供了一种有价值的新途径。  相似文献   

13.
刘英杰 《有色矿冶》2012,28(6):33-35
概述了底吹熔池炼铜技术的发展背景与现状,简述底吹炉炼铜渣选矿工艺和炉外分离电炉贫化工艺,针对国内中小型铜冶炼企业的发展需求,对两种工艺从一次性建设投入、炉渣后继处理成本、铜收率及经济效益等方面进行对比分析,并得到初步对比结论。  相似文献   

14.
介绍了鞍钢股份有限公司炼钢总厂转炉"留渣+双渣"工艺的关键技术,包括留渣及炉渣固化技术、炉渣流动性控制及高效脱磷技术、快速足量放渣及渣铁分离技术、炉渣返干控制及终渣Fe O控制技术以及"留渣+双渣"快速生产技术,采用这些技术后,吨钢成本降低12.19元。  相似文献   

15.
利用Depthwave(自由路程分析微波时间开发出的钢包内净空和钢渣深度的非接触测量。通过此种测量 ,指示出钢渣深度和类型 ,并导出钢包内的钢渣质量 (重量 )。然后根据测得的或估计的钢渣中的FeO百分比计算出钢包钢渣中的FeO重量。根据计算结果 ,加入正确量的钢渣还原剂,以获得要求的钢渣中FeO百分比。FeO和MnO的还原导致合金回收的提高与改进 ,并且降低了下游银废弃率。  相似文献   

16.
为改善现场工作环境,利用水渣的松散性,研制了自动清渣机代替人工进行挖渣清沟。清渣机由道轨、行走装置、挖掘输送装置、提升装置、溜槽及架体等6部分组成,大部分是金属结构件,结构简单。造价仅为3万元。应用表明,清渣机操作方便、安全可靠,清渣效果良好。  相似文献   

17.
建立了不锈钢渣的CaO-MgO-FeO-SiO2-Al2O3-Cr2O3六元渣系活度模型.基于共存理论的活度模型得出了渣系中主要组分及复合氧化物在不同条件下的活度.结果表明,原渣系中的Cr2O3主要形成了不稳定的CaCr2O4,在自然环境中可以被氧化为酸溶性的CaCrO4,从而释放出强毒性的Cr6+,因此不锈钢渣具有潜在毒性.温度、碱度以及渣中MgO、FeO都对Cr2O3进入尖晶石相中从而实现稳定解毒有影响.通过调节渣系成分和处理条件能够基本实现含铬废渣的无公害化.  相似文献   

18.
研究了不同酸度条件下,随着高炉熔渣中主要成分的变化,其黏度和表面张力对高炉渣作为矿渣棉原料的影响,并对其影响机制进行了探讨。结果表明,Al2O3和SiO2增加时,黏度增加,表面张力也随之加大,利于制取较长的矿渣棉纤维。  相似文献   

19.
闷渣工艺、闷渣池长期处于高温、高压、高湿状态的工作环境。针对恶劣的工作环境,对闷渣池的设计和构造方法进行优化,提高了闷渣池的使用寿命,使其更加安全可靠。指出工程地质及地下水情况是影响结构设计的重要参数,应针对不同的地质及地下水位情况应采取不同的结构设计手段,以保证构筑物的安全使用。  相似文献   

20.
转炉溅渣护炉的炉渣控制及炉衬侵蚀机理   总被引:3,自引:1,他引:2  
利用副枪在转炉吹炼过程中取样、测温和对炉衬残砖的化学成分、岩相、流动温度的测定结果,研究了宝钢转炉溅渣护炉炉渣的控制及炉衬侵蚀机理。结果表明:转炉终渣MgO含量应控制在10 % 左右、溅渣层的熔损主要发生在炉温较高的吹炼后期,而镁碳砖的侵蚀是由于炉渣渗入镁碳砖的气孔和裂缝中,使其脱碳和渣化,在高温下流入渣层所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号