首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A superhydrophobic surface was created on poly(vinylchloride)-coated architectural fabric using spray coating method. Dispersions of nanoparticles and a flourochemical were prepared as top coating solutions. After spray-dry-cure process, contact angle, sliding (tilt) angle, 3 M water repellency test and surface morphology were compared between uncoated and top coated PVC surfaces. The results indicated that a specific nano-TiO2 dispersion top coating produced a superhydrophobic layer on the top of the PVC surface with high contact angle (150°) and very low sliding angle (2°). Combination of two major requirements, the magnified of the degree of roughness and low surface energy, created self-cleaning effect on the PVC surface. Abrasion fastness of superhydrophobic top coating was improved by surface oxidation via UV–ozone surface treatments. Spectroscopic analysis demonstrated that formation of oxygenated functional groups has improved PVC wettability and adhesion. Results of artificial weathering test indicated no change in superhydrophobicity of top coated PVC.  相似文献   

2.
Hollow silica nanostructures exhibit important applications in catalysis, sensing, and gene delivery due to their increased surface areas, good biocompatibility, and unique optical features. Here we report a simple and green approach to synthesize silica nanotubes using environment—friendly ZnO nanorods as templates. The ZnO nanorods are first coated with a layer of uniform silica shell by a sol–gel method. Then silica nanotubes are derived from the ZnO@SiO2 nanohybrids after removal of the ZnO nanorod cores in diluted hydrochloric acid solution. The samples at different stages were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Energy-dispersive X-ray spectroscopy, and Transmission electron microscopy. By controlling the structure of the ZnO@SiO2 nanohybrids, such as shell thickness, and the diameter and length of ZnO nanorods, size controllable SiO2 nanotubes can be expected.  相似文献   

3.
Hybrid films prepared from TEOS and polyoxazolines (Si–POx–Si) crosslinking agents were coated on different substrates in order to modify their surface properties. The film cohesion and adhesion on substrates were expected through the hydrogen bonding of the polyoxazoline crosslinked network. Low molecular-weight α,ω-unsaturated polyoxazolines (DA-PMOx)s were synthesized by a one step cationic ring-opening polymerization (CROP) of 2-methyl-2-oxazoline (MOx) with a good control over the molecular weight. Based on double thiol-ene coupling (d-TEC) a post-functionalization of DA-PMOx end chains gave in good yield polyoxazoline cross linker (Si–POx–Si). Glass and various polymer substrates (PP, PEI, POM, etc.) were spin coated by the organic–inorganic hybrid films through sol–gel process. AFM, SEM, visible reflectance spectroscopy and contact angle experiments allowed the full characterization of targeted surfaces and demonstrated the efficiency of the polyoxazoline coating.  相似文献   

4.
A new hyperbranched poly(ethyleneimine) with ethoxysilyl groups at the chain ends has been synthesized and characterized and then used in epoxy formulations to generate new organic/inorganic hybrid materials. Formulations of different proportions of diglycidylether of bisphenol A and the prepared ethoxysilylated hyperbranched poly(ethyleneimine) were maintained in a thermostatized controlled humidity chamber to form the inorganic silica network by a sol–gel process and then the epoxy resin was cured at higher temperature using 1-methylimidazole as anionic initiator.  相似文献   

5.
The wettability and adhesion of various polymers were improved using ion-assisted reaction (IAR) method, in which the polymer surfaces were irradiated by energetic ions in a reactive gas environment. The addition of new polar groups on polymer surfaces and permanent wettable polymer surfaces (water contact angle below 30° and surface free energy 60–70 mJ/m2) have been accomplished by IAR treatment. The changes in wettability and surface free energy were critically dependent on the ion dose, the ion beam energy and the flow rate of the reactive gas. Improvements in wettability and surface free energy are primarily attributed to the increase of polar components due to the formation of polar groups such as –(C=O)–, –(C=O)–O–, –(C–O)–, etc. The characteristics of the IAR treatment have been reviewed, with outstanding results regarding the wettability and adhesion of various polymers from polyolefin to fluoropolymers.  相似文献   

6.
《Ceramics International》2022,48(17):24372-24382
Using 3D printing technology to prepare ceramic shell used for precision investment casting can realize short process and efficient preparation of the ceramic shell, which has a great application potential in the casting field. However, the 3D printed ceramic shells often have the problems of low strength and accuracy. In this paper, a silica sol room temperature dip coating treatment combined with high temperature sintering method was proposed to improve the strength and surface precision of the ceramic shell prepared by the binder jetting. The effects of silica sol concentration and dip coating time on performance and surface precision of the alumina ceramic shell were studied. The mechanical properties and surface precision of the alumina ceramic shell prepared by the binder jetting were improved significantly with the increases of the sol concentration and dip coating time. With the dip coating time of 90 s and sol concentration of 30%, the maximum bending strength of the alumina ceramic reached 44.8 MPa, which was 18.9 times higher than that of the untreated alumina ceramic. The top surface roughness and side roughness of the alumina ceramic decreased from 6.87 μm to 5.70 μm and 7.55 μm–6.46 μm, respectively, compared to those of the untreated alumina ceramic.  相似文献   

7.
Direct-patterning of ZnO hybrid films containing MWNT was realized without using photoresist and dry etching. Photosensitive 2-nitrobenzaldehyde was introduced into the solution precursors as a stabilizer and contributed to form a cross-linked network structure during photochemical reaction. According to the incorporation of multi-walled nanotube (MWNT) into ZnO films, the transmittance of ZnO hybrid film containing MWNT did not change but the sheet resistance was improved due to the enhancement of charge mobility due to π-bonding nature of MWNT. These results suggested a possibility that a micro-patterned system can be fabricated relatively easily and without high-cost processes, for example, by conventional etching procedure.  相似文献   

8.
《Ceramics International》2020,46(10):15831-15839
The wettability and photocatalytic activity of ZnO nanostructures synthesized by hydrothermal method are reported. XRD, FESEM, XPS, TEM, AFM, Contact angle, UV/Vis and photoluminescence spectroscopy are used to characterize the samples. It is observed that ZnO seeded layer results in the formation of nanorods whereas the absence of seed gives rise to flake like morphology. The XRD indicates that ZnO nanorods have preferred orientation along (002) direction. The formation of ZnO nanorods along (002) direction is due to the existence of nucleation sites resulting from the lattice matching of ZnO seed. Wettability studies show that the ZnO nanorods grown on seeded substrate approaches superhydrophobic state with water contact angle (WCA) of 137.0°. The high contact angle is due to the large surface roughness and low surface energy. The enhanced catalytic performance of ZnO nanorods is attributed to the 1D structure, enhanced roughness, crystallinity and a large number of reactive oxidizing species.  相似文献   

9.
Resorcinol–formaldehyde/silica composite (RF/SiO2) aerogel was synthesized by sol–gel process followed by supercritical drying (SCD). Monolithic SiC aerogel was obtained from RF/SiO2 aerogel after carbothermal reduction. The evolution of physical property, crystal structure, morphology and pore structure from RF/SiO2 to SiC aerogel was investigated by different methods, such as X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and N2 adsorption/desorption. The as-synthesized SiC aerogel presented typical mesoporous structure and possessed high porosity (91.8%), high surface area (328 m2/g) and large pore volume (2.28 cm3/g). Carbothermal reduction mechanism was also discussed based on the experiment and characterization results.  相似文献   

10.
In this paper we present a method to produce superhydrophobic polymeric coatings by combining the rapid expansion of supercritical solutions (RESS) with electrostatic deposition (ED). A copolymer, poly(vinyl acetate)–poly(vinyl pivalate) was dissolved in a mixture of supercritical carbon dioxide and acetone and sprayed through a nozzle with an applied voltage of 8 kV onto a surface placed on a earthed collector. Spray distance and polymer concentration were altered to find the most suitable spraying conditions. Superhydrophobic surfaces were produced when spraying both with and without a voltage, although the water repellent surfaces could be produced at a larger variety of processing parameters using the RESS-ED technique. The greatest improvement of using the RESS-ED process was that larger and thinner coatings were produced with a more even surface coverage of the created polymer particles compared to spraying without the applied voltage.  相似文献   

11.
Macroporous yttria-stablized tetragonal zirconia has been synthesized combining the sol–gel with Pechini method. Polyacetylacetonatozirconium (PAZ) served as the zirconium precursor while polyvinyl alcohol (PVA) was used as pore template. The thermal behaviors of xerogel and porous zirconia were determined by thermogravimetric/differential thermal analysis (TG/DTA). FT-IR, FE-SEM, and XRD analysis indicated that the organic components of xerogel have been completely removed and porous zirconia was formed after annealing at 600 °C for 2 h in air. The skeleton is composed of zirconia particles with diameter of about 60 nm and the pore diameter is about 68 nm. The surface area and pore volume of the bulk macroporous yttria-stablized tetragonal zirconia are 9.4 m2/g and 0.016 cm3/g, respectively, evaluated from nitrogen adsorption/desorption measurements.  相似文献   

12.
Linear polyurethanes were obtained the reaction of 1,6-hexamethylene diisocyanate with poly(ɛ-caprolactone)diol and butane-1,4-diol. Synthesis was carried out in the presence of 1, 3 and 5 wt.% of polydimethylsiloxane-poly(methyl methacrylate) core–shell nanopowder. Solutions of resulting polyurethanes were cast on PTFE plates and dried at 140 °C to form films. The presence of structures originating from modifier was confirmed by IR and XPS spectroscopy. DSC analysis revealed the presence of crystalline phase in all samples. Contact angles were determined using standard fluids and surface free energy parameters were calculated. The results of these investigations proved that modification with silicone-acrylic nanopowder resulted in significant increase in hydrophobicity of polyurethane surfaces Changes in surface characteristics were also reflected in surface images obtained in AFM studies. It is suggested that the polyurethane composites obtained in this study can be tested as coatings for biomedical applications.  相似文献   

13.
The mesoporous carbon ceramics SiO2/20 wt% C (SBET = 160 m2 g−1) and SiO2/50 wt% C (SBET = 170 m2 g−1), where C is graphite, were prepared by the sol–gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. The materials containing 20 and 50 wt% of C presented electric conductivities of 9.2 × 10−5 and 0.49 S cm−1, respectively. These materials were used as matrices to support cobalt phthalocyanine (CoPc), prepared in situ on their surfaces, to assure homogeneous dispersion of the electroactive complex in the pores of both matrices. The surface densities of cobalt phthalocyanine on both matrix surfaces were 0.014 mol cm−2 and 0.015 mol cm−2 for materials containing 20 and 50 wt% of C, respectively. Pressed disk electrodes made with SiO2/50 wt% C/CoPc and SiO2/20 wt% C/CoPc were tested as sensors for oxalic acid. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 5.8 × 10−7 mol L−1.  相似文献   

14.
Zirconia based nanostructured hybrid sol–gel coating, impregnated with propargyl alcohol (PA) to hinder corrosion of mild steel was studied. Zirconia nano-particles (TPOZ) contained sol–gel was synthesized using 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursor and subsequently optimized for internal cohesion as well as adhesion to the mild steel substrate to assess the consequent effect on suppression of corrosion damage in 0.5 M NaCl solution. Electrochemical Impedance Spectroscopy (EIS) and Scanning Electron Microscopy (SEM) results demonstrated the effect of coating integrity on impeding corrosion. Experiments on mild steel specimens coated with hybrid sol–gel films following mechanical polishing render superior corrosion resistance to mild steel in contrast to those undergoing electrochemical polishing with marked lower surface roughness. Results also proved of beneficial effect of low and exact concentration of PA on sol–gel coat's barrier properties evident from diminished corrosion current and other electrochemical indicators.  相似文献   

15.
Nanocrystalline Fe2TiO5 thin films have been grown on Si (1 0 0) at room temperature by using simple, cost effective sol–gel process assisted by microwave irradiation for thermal treatment. For comparison purpose the deposited films have been subjected to two kinds of annealing treatments: first set by using conventional annealing and second set by irradiating the deposited films at different microwave powers for 10 min. In both treated films, formation of orthorhombic phase of Fe2TiO5 structure has been observed. It is evident that there is a dramatic structural modification when the deposited films are exposed to microwave. There was slight stoichiometric change of Fe2TiO5 thin films treated by conventional annealing and microwave annealing. Microwave exposed films have shown 47% of Fe, 6% of Ti and 47% of O in the films of the Fe2TiO5, whereas annealed films have shown close to the stoichiometry in Fe2TiO5 with 30% of Fe, 14% of Ti and 56% of O. Plausible mechanism for the formation of nanocrystalline orthorhombic phase of Fe2TiO5 perovskite structure at low microwave powers has also been discussed. This new innovative microwave heating could open a door for the advanced nanotechnologies to cut down the process cost in post treatment of the nanomaterials.  相似文献   

16.
From the maximal extrapolated film pressure πmax values for n-octane and n-propanol, the dispersion and non-dispersion components of the surface free energy of galena precoated with potassium ethyl xanthate (collector) were estimated and they were then correlated with the floatability of galena. The collector layer deposited by methanol evaporation did not produce any significant changes in the surface free energy of galena. Polymolecular adsorption of the collector occurred from aqueous solution. The adsorbed collector layer of ~8 statistical monolayers in thickness produced a considerable decrease in the dispersion component of the surface free energy and complete disappearance of non-dispersion interactions. At this surface coverage, a certain change in the properties of the adsorbed layer appeared which was probably connected with the formation of polymolecular layers containing dixanthogen. The work of the water adhesion being significantly lower than the work of water cohesion appeared insufficient to achieve a high floatability of galena.  相似文献   

17.
《Ceramics International》2020,46(6):7421-7429
Two-Axis spin coating as a new modified technique is employed to enhance the quality and surface leveling of thin films. The modified technology utilizes a synthetic centrifugal force perpendicular to the surface which generates an elevated gravity acceleration while spreading the coating on the entire wafer surface. In this paper, copper acetate sol-gel is coated by conventional and Two-Axis spin coating techniques. The coated layers are sintered in an air furnace at 275 °C. The fabricated layers are characterized by GIXRD, EDX, AFM and SEM devices. Wettability and Surface Free Energy (SFE) of sintered films using the contact angle technique are measured, and evaluated by the Owens-Wendt method. XRD and EDX spectra show a higher intensity of copper oxide phase using Two-Axis spin coating technology. AFM micrographs showed an improvement in the surface leveling within the Two-Axis spin coated layer. A comparison between the SFE of conventional and Two-Axis spin coated layers shows an increase in SFE of the layer synthesized under 200g artificial gravity acceleration.  相似文献   

18.
Photogenerated charging properties of single Si nanorods (Si NRs) are investigated by electrostatic force microscopy (EFM) combined with laser irradiation. Under laser irradiation, Si NRs are positively charged. The amount of the charges trapped in single NRs as well as the contact potential difference between the tip and NRs'' surface is achieved from an analytical fitting of the phase shift - voltage curve. Both of them significantly vary with the laser intensity and the NR''s size and construction. The photogenerated charging and decharging rates are obtained at a timescale of seconds or slower, indicating that the Si NRs are promising candidates in photovoltaic applications.  相似文献   

19.
Summary It is a challenge to fabricate fluorine-containing polymer surface with low-energy properties and superior long-lasting barrier properties as well as lower fluorine content. In this paper, poly(butyl methacrylate) end-capped with 2-perfluorooctylethyl methacrylate units (PBMA-ec-FMA) , having the so-called push-me/pull-you structures, have been synthesized by ATRP and their surface properties were investigated. This structure was in favorable of the longer -(CF2)7CF3moieties self-assembling on the polymer surface during film formation, which resulted in better chain alignment and packing of the longer -(CF2)7CF3moieties. Therefore, the contact angles of water and paraffin oil on the surface of the end-capped PBMA were 118° and 84°, respectively, approaching that of poly(2-perfluorooctylethyl methacrylate) homopolymer, even though the content of FMA was 0.34 mol% (the average polymerization degree of PFMA units is 1). However, more than 9 mol% was necessary for the relative random copolymer (PBMA-r-PFMA) to reach these values of the contact angle. Regardless of the wetting properties, the end-capped PBMA by fluorinated methacrylate has better resistance to surface reconstruction than PBMA-r-PFMA random copolymer even though FMA content in PBMA-ec-FMA is much lower than that in random copolymer. Therefore, it may be a facile method to create stable hydrophobic surfaces with lower price.  相似文献   

20.
The aim of this study is enhancing an automotive clearcoat easy-to-clean property against simulated tree gum (Arabic gum) using hydroxyl-functional silicone polyacrylate additives having different hydroxyl contents. The clearcoat surface, mechanical and chemical properties were studied using a contact angle measuring device, dynamic mechanical thermal analysis (DMTA) and Fourier Transform Infrared spectroscopy (FT-IR) respectively. It was found that additive with lower hydroxyl content gave rise to better easy-to-clean properties of the clearcoat against Arabic gum. This additive also resulted in lower contact angles and higher cross-linking density, tensile stress and work of break of the clearcoat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号