首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneous Ag/Ag3PO4/BiPO4 photocatalyst was synthesized by a one-step low temperature chemical bath method and exhibited better photocatalytic activity and better stability than those of individual Ag3PO4 or BiPO4 nanoparticles for photodegradation of organic compounds (Rhodamine B) in the absence of electron accepters under visible light (λ>420 nm). The enhanced photocatalytic performance is mainly ascribed to the strong visible-light absorption originating from high efficient separations of photogenerated electron–hole pairs through Ag3PO4/BiPO4 and Ag/Ag3PO4 heterostructures.  相似文献   

2.
A coupled WO3/BiVO4 thin film has been deposited on FTO substrate by a spin coating method from precursor solutions. The composite films were characterized by AFM, SEM, XPS and XRD techniques. The incident photon to current efficiency (IPCE) of BiVO4 electrode was increased by 10 times when a WO3 film was layered between the BiVO4 layer and the FTO substrate. The enhanced performance of WO3/BiVO4 composite film electrode is mainly ascribed to the effective electron-hole separations at the semiconductor heterojunction. A schematic mechanism of charge transfer was proposed to explain the photocurrent enhancement for the WO3/BiVO4 electrode surface.  相似文献   

3.
Visible-light-induced BiVO4 photocatalyst has been successfully synthesized via a solution combustion synthesis (SCS) method. The photocatalytic activities of the as-synthesized sample were evaluated by the photodegradation of rhodamine B (RhB) and phenol under visible-light irradiation (λ > 420 nm). The decolorization of high-concentrated RhB (10− 4 M) and the variation of the chemical oxygen demand (COD), demonstrated that the BiVO4 photocatalyst was efficient in aromatic organic compounds degradation. The reduction of total organic carbon (TOC) (about 22.0% after 4.5 h of irradiation) showed that the mineralization of RhB over the BiVO4 photocatalyst is realized. Additionally, much enhanced photocatalytic performance for phenol degradation was also realized with the assistance of appropriate amount of H2O2.  相似文献   

4.
A milling process to reduce kaolin to amorphous phase in the presence of KH2PO4 or NH4H2PO4 and allow mechanochemical (MC) reaction for incorporation of KH2PO4 and NH4H2PO4 into the kaolin structure was investigated in this work. Mixtures of kaolin and KH2PO4 and NH4H2PO4 in separate systems were prepared by milling in a planetary ball mill. Tests with kaolin contents ranging from 25 to 75 wt.% and mill rotational speeds from 200 to 700 rpm were performed to evaluate incorporation of KH2PO4 and NH4H2PO4 and release of K+, NH4+ and PO43− ions into solution. Analyses by XRD, DTA and ion chromatography indicated that the MC process was successfully applied to incorporate both KH2PO4 and NH4H2PO4 into the amorphous kaolin structure. Release of K+ and PO43− ions from the system (kaolin-KH2PO4) when dispersed in water for 24 h reached only up to 10%. Under similar conditions for the system (kaolin-NH4H2PO4), release of NH4+ and PO43− ions reached between 25 and 40%. These results indicated that the MC process can be developed to allow amorphous kaolin to act as a carrier of K+, NH4+ and PO43− nutrients to be released slowly for use as fertilizer.  相似文献   

5.
FeTiO3/TiO2, a new heterojunction-type photocatalyst working at visible light, was prepared by a simple sol–gel method. Not only did FeTiO3/TiO2 exhibit greatly enhanced photocatalytic activity in decomposing 2-propanol in gas phase and 4-chlorophenol in aqueous solution, but also it induced efficient mineralization of 2-propanol under visible light irradiation (λ ≥ 420 nm). Furthermore, it showed a good photochemical stability in repeated photocatalytic applications. FeTiO3 showed a profound absorption over the entire visible range, and its valence band (VB) position is close to that of TiO2. The unusually high photocatalytic efficiency of the FeTiO3/TiO2 composite was therefore deduced to be caused by hole transfer between the VB of FeTiO3 and TiO2.  相似文献   

6.
Five hundred hours continuous aging test at constant discharge current (640 mA cm−2) was performed on PBI/H3PO4 high temperature PEMFC unit cell, electrochemical techniques-linear sweep voltammetry (LSV) and AC impedance measurement were used to investigate the changes of electrochemical surface area (ESA) and high frequency resistance (internal resistance) with time. Initial experimental results showed that during 500 h continuous aging test the main reason for cell performance degradation is the decrease of ESA caused by sintering. In addition, a one-dimensional mathematical model was constructed, the concentration distributions of cathode reactant gases (O2 and gaseous H2O) were calculated and polarization curves recorded during aging test were simulated based on the model, the simulated polarization curves compare well with the experimental results.  相似文献   

7.
Gold nanoparticles were successfully deposited on FTO/WO3/BiVO4 electrode surface by means of electrolysis of AuCl4 ions. The composite films were characterized by SEM, XPS and XRD techniques. An increase in photocurrent and a negative shift of onset potential for water oxidation were observed upon modification of the electrode surface with the Au particles. The electrochemical impedance spectroscopy was used to confirm the acceleration of charge transfer process by Au deposition at the electrode surface. The photocurrent action spectrum did not correlate with the plasmonic absorbance of Au nanoparticles at 560 nm, suggesting that the Au nanoparticles increased charge separation without undergoing a plasmon resonance effect under visible light irradiation.  相似文献   

8.
A series of S-doped TiO2 with visible-light photocatalytic activity were prepared by a simple hydrolysis method using titanium tetrachloride (TiCl4) and sodium sulfate (Na2SO4) as precursors. The photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV–vis diffuse reflectance spectrophotometer (UV–Vis DRS), and X-ray photoelectron spectroscopy (XPS). With the doping of S, photocatalysts with small crystal size, high content of anatase phase were obtained. The result showed that S-doped TiO2 demonstrate considerably high photoactivity under low power visible LED light irradiation, while undoped TiO2 and the Degussa P25 have nearly no activity at all. The possible mechanism of S-doped for the visible-light activity was discussed.  相似文献   

9.
A liquid-based sol-gel method was developed to synthesize nanocarbon-coated Li3V2(PO4)3. The products were characterized by XRD, SEM and electrochemical measurements. The results of Rietveld refinement analysis indicate that single-phase Li3V2(PO4)3 with monoclinic structure can be obtained in our experimental process. The discharge capacity of carbon-coated Li3V2(PO4)3 was 152.6 mAh/g at the 50th cycle under 1C rate, with 95.4% retention rate of initial capacity. A high discharge capacity of 184.1 mAh/g can be obtained under 0.12C rate, and a capacity of 140.0 mAh/g can still be held at 3C rate. The cyclic voltammetric measurements indicate that the electrode reaction reversibility is enhanced due to the carbon-coating. SEM images show that the reduced particle size and well-dispersed carbon-coating can be responsible for the good electrochemical performance obtained in our experiments.  相似文献   

10.
TiO2 photocatalyst loaded on Si3N4 (TiO2/Si3N4) was prepared by a conventional impregnation method and its photocatalytic performance for the degradation of organics (2-propanol) diluted in water was compared with that of TiO2 photocatalysts (TiO2/SiO2, TiO2/Al2O3, and TiO2/SiC) loaded on various types of supports (SiO2, Al2O3, and SiC). The formation of the well-crystallized anatase phase of TiO2 was observed on the calcined TiO2/Si3N4 photocatalyst, while a small anatase phase of TiO2 was observed on the TiO2/SiC photocatalyst and amorphous TiO2 species was the main component on the TiO2/SiO2 and TiO2/Al2O3 photocatalysts. The measurements of the water adsorption ability of photocatalysts indicated that the TiO2/Si3N4 photocatalyst exhibited more hydrophobic surface properties in comparison to other support photocatalysts. Under UV-light irradiation, the TiO2/Si3N4 photocatalyst decomposed 2-propanol diluted in water into acetone, CO2, and H2O, and finally, acetone was also decomposed into CO2 and H2O. The TiO2/Si3N4 photocatalyst showed higher photocatalytic activity than TiO2 photocatalyst loaded on other supports. The well-crystallized TiO2 phase deposited on Si3N4 and the hydrophobic surface of Si3N4 support are important factors for the enhancement of photocatalytic activity for the degradation of organic compounds in liquid-phase reactions.  相似文献   

11.
采用水热合成法制备C_3N_4-BiVO_4复合光催化剂,以甲基橙为目标污染物,研究催化剂用量、甲基橙溶液初始浓度和pH值、NaCl用量对甲基橙脱色率的影响,并通过C_3N_4-BiVO_4复合光催化剂的循环使用实验,考察其重复使用性能。结果表明,在甲基橙初始浓度20 mg·L~(-1)、复合光催化剂用量3.0 g·L~(-1)及弱酸性条件下,光照反应6 h,目标污染物甲基橙脱色率达98.81%,溶液中的NaCl对催化剂降解甲基橙有抑制作用。催化剂重复使用5次后,溶液脱色率约80%,表明催化剂性能较稳定,可重复使用。  相似文献   

12.
This paper reports the application of chitosan–Fe3O4 (CS–Fe3O4) nanocomposite modified glassy carbon electrodes for the amperometric determination of bisphenol A (BPA). We observed that the CS–Fe3O4 nanocomposite could remarkably enhance the current response and decrease its oxidation overpotential in the electrochemical detection. Experimental parameters, such as the amount of the CS–Fe3O4, the accumulation potential and time, the pH value of buffer solution etc. were optimized. Under the optimized conditions, the oxidation peak current was proportional to BPA concentration in the range between 5.0 × 10−8 and 3.0 × 10−5 mol dm−3 with the correlation coefficient of 0.9992 and the limit of detection of 8.0 × 10−9 mol dm−3 (S/N = 3). The proposed sensors were successfully employed to determine BPA in real plastic products and the recoveries were between 92.0% and 06.2%. This strategy might open more opportunities for the electrochemical determination of BPA in practical applications. Additionally, the leaching studies of BPA on incubation time using the as-prepared modified electrode were successfully carried out.  相似文献   

13.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

14.
Stoichiometric phosphors LiGd1−xEux(PO3)4(x=0, 0.2, 0.4, 0.6, 0.8, 1.0) were synthesized via traditional solid state reactions. The X-ray powder diffraction measurements show that all prepared samples are isostructural with LiNd(PO3)4. Eu3+ doped phosphors can emit intense reddish orange light under the excitation of near ultraviolet light from 370 to 410 nm. The strongest two at 591 and 613 nm can be attributed to the transitions from excited state 5D0 to ground states 7F1 and 7F2, respectively. The typical chromaticity coordinates (x=0.620, y=0.368) of Eu3+ doped phosphors are in red area. The recorded absorbance spectra indicate that there is effective absorbance in the near UV region for all Eu3+ doped samples. Present research indicates that LiGd1–xEux(PO3)4 is a promising phosphor for white light-emitting diodes.  相似文献   

15.
Yanping Guo 《Carbon》2006,44(8):1464-1475
Physical and chemical properties of activated carbons produced from commercial xylan, cellulose, and Kraft lignin by H3PO4 activation at various process conditions were studied. The results show that the more reactive the precursor under acidic conditions, the easier the porosity development, particularly mesoporosity. In addition, Boehm titration and Fourier Transform Infrared Spectroscopy (FTIR) characterization results demonstrated that the functional groups on the surfaces of these carbons consist of both temperature-sensitive and temperature-insensitive components. The temperature-sensitive component is primarily caused by the hydrolysis of raw materials under acidic conditions at low temperature, and the reaction between activation mixture and oxygen in the process of activation, particularly at low impregnation ratio. These surface groups decompose at high temperature. The temperature-insensitive contribution is mainly composed of phosphorus-containing groups arising from the reaction of H3PO4 (or pyro- and polyphosphoric acids) with precursor, and carbonyl-containing groups. This part of surface functional group is stable, even at high activation temperatures. This study also confirmed that the nature of precursor, impregnation ratio between H3PO4 and precursor, and activation temperature are important factors affecting the properties of final activated carbon products.  相似文献   

16.
The kinetics of oxygen electroreduction have been studied on a smooth platinum electrode coated with Nafion® in concentrated 85% H3PO4. The effects of Nafion® coatings of different thickness on O2 electroreduction at a smooth Pt rotating disk electrode with 85% phosphoric acid as the bulk electrolyte were examined. The kinetic current increases with increasing Nafion® film thickness while the diffusion limiting current decreases with increasing Nafion® film thickness. A O2 concentration profile model for the Pt/Nafion®/bulk electrolyte has been established, and this model can be used to explain the O2 reduction polarization results. The performance of Nafion®-modified, high surface area Pt/carbon air cathodes for use in the H2–air concentrated phosphoric acid fuel cell was also studied.  相似文献   

17.
Cr-doped Li3V2−xCrx(PO4)3/C (x = 0, 0.05, 0.1, 0.2, 0.5, 1) compounds have been prepared using sol–gel method. The Rietveld refinement results indicate that single-phase Li3V2−xCrx(PO4)3/C with monoclinic structure can be obtained. Although the initial specific capacity decreased with Cr content at a lower current rate, both cycle performance and rate capability have excited improvement with moderate Cr-doping content in Li3V2−xCrx(PO4)3/C. Li3V1.9Cr0.1(PO4)3/C compound presents an initial capacity of 171.4 mAh g−1 and 78.6% capacity retention after 100 cycles at 0.2C rate. At 4C rate, the Li3V1.9Cr0.1(PO4)3/C can give an initial capacity of 130.2 mAh g−1 and 10.8% capacity loss after 100 cycles where the Li3V2(PO4)3/C presents the initial capacity of 127.4 mAh g−1 and capacity loss of 14.9%. Enhanced rate and cyclic capability may be attributed to the optimizing particle size, carbon coating quality, and structural stability during the proper amount of Cr-doping (x = 0.1) in V sites.  相似文献   

18.
A carbon coated Li3V2(PO4)3 cathode material for lithium ion batteries was synthesized by a sol-gel method using V2O5, H2O2, NH4H2PO4, LiOH and citric acid as starting materials, and its physicochemical properties were investigated using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscope (TEM), and electrochemical methods. The sample prepared displays a monoclinic structure with a space group of P21/n, and its surface is covered with a rough and porous carbon layer. In the voltage range of 3.0-4.3 V, the Li3V2(PO4)3 electrode displays a large reversible capacity, good rate capability and excellent cyclic stability at both 25 and 55 °C. The largest reversible capacity of 130 mAh g−1 was obtained at 0.1C and 55 °C, nearly equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1). It was found that the increase in total carbon content can improve the discharge performance of the Li3V2(PO4)3 electrode. In the voltage range of 3.0-4.8 V, the extraction and reinsertion of the third lithium ion in the carbon coated Li3V2(PO4)3 host are almost reversible, exhibiting a reversible capacity of 177 mAh g−1 and good cyclic performance. The reasons for the excellent electrochemical performance of the carbon coated Li3V2(PO4)3 cathode material were also discussed.  相似文献   

19.
BiVO4 with a 2.3 eV band gap showed an activity for O2 evolution from aqueous solutions containing Ag+ as an electron scavenger under visible light irradiation (λ > 520 nm). The quantum yield was 0.5% at 450 nm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Yuzhan Li 《Electrochimica acta》2007,52(15):4922-4926
Li3V2(PO4)3/carbon composite material was synthesized by a promising sol-gel route based on citric acid using V2O5 powder as a vanadium source. Citric acid acts not only as a chelating reagent but also as a carbon source, which enhance the conductivity of the composite material and hinder the growth of Li3V2(PO4)3 particles. The structure and morphology of the sample were characterized by TG, XRD and TEM measurements. XRD results reveal that Li3V2(PO4)3/carbon was successfully synthesized and has a monoclinic structure with space group P21/n. TEM images show Li3V2(PO4)3 particles are about 45 nm in diameter embeded in carbon networks. Galvanostatic charge/discharge and cyclic voltammetry measurements were used to study its electrochemical behaviors which indicate the reversibility of the lithium extraction/insertion processes. Li3V2(PO4)3/carbon performed in a voltage window (3.0-4.8 V) exhibits higher discharge capacity, better cycling stability and its discharge capacity maintains about 167.6 mAh/g at a current density of 28 mA/g after 50 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号