首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid solutions of (Ba0.9−xSrxCa0.1)(Ti0.8Zr0.2)O3 (BSCTZ) (0.1≤x≤0.4) were prepared using the conventional solid state reaction method. The effects of the substitution content on the crystallographic structure, phase transition and dielectric properties of the samples were investigated by dielectric and Raman spectroscopy over a wide temperature range from 100 to 500 K. All the samples were noted to undergo a diffuse phase transition from the tetragonal to the cubic phase and to exhibit a relaxor ferroelectric behavior.  相似文献   

2.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

3.
(BaxPb1−x)(Zn1/3Nb2/3)O3 (BPZN; x = 0.06–0.1) relaxor ferroelectric ceramics produced using a reaction-sintering process were investigated. Without any calcination involved, the mixture of raw materials was pressed and sintered directly. BPZN ceramics of 100% perovskite phase were obtained. Highly dense BPZN ceramics with a density higher than 98.5% of theoretical density could be obtained. Maximum dielectric constant Kmax 13,500 (at 75 °C), 19,600 (at 50 °C) and 14,800 (at 28 °C) at 1 kHz could be obtained in 6BPZN, 8BPZN and 10BPZN, respectively. Dielectric maximum temperature (Tmax) in BPZN ceramics via reaction-sintering process is lower than BPZN ceramics prepared via B-site precursor route.  相似文献   

4.
The diopside ceramics with a formula of Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6 (x=0.01–0.3) were synthesized via a traditional solid-state reaction method, and their solid solubility, sintering behavior and microwave dielectric properties were investigated. The results revealed that the solubility limit of Al2O3 in Ca(Mg1−xAlx)(Si1−x/2Alx/2)2O6, which is defined as x, was between 0.15 and 0.2, and a second phase of CaAl2SiO6 presented when the x value reached 0.2. Appropriate Al3+ substitution for Mg2+ and Si4+ could promote the sintering process and lower the densification temperature, and a broadened densification temperature range of 1250–1300 °C was obtained for the compositions of x=0.08–0.15. With the increase of the x value, the dielectric constant (εr) increased roughly linearly, and the temperature coefficient of frequency (τf) showed a rising trend. The Q×f values increased from 57,322 GHz to 59,772 GHz as the x value increased from 0.01 to 0.08, and then they were saturated in the range of x=0.08–0.2. Further increase of the x value (x≥0.25) deteriorated the microwave dielectric properties. Good microwave dielectric properties of εr=7.89, Q×f=59,772 GHz and τf=−42.12 ppm/°C were obtained for the ceramics with the composition of x=0.08 sintered at 1275 °C.  相似文献   

5.
The effects of substitution of (Zn1/3Nb2/3) for Ti on the sintering behavior and microwave dielectric properties of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (0 ≤ x ≤ 4) ceramics have been investigated. The dielectric constant (?r) and the temperature coefficient of the resonant frequency (τf) of Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 ceramics decreased with increasing x. However, the Q × f values enhanced with the substitution of (Zn1/3Nb2/3) for Ti. It was found that a small amount of MnCO3-CuO (MC) and ZnO-B2O3-SiO2 (ZBS) glass additives to Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics lowered the sintering temperature from 1250 to 900 °C. And Ba3Ti4−x(Zn1/3Nb2/3)xNb4O21 (x = 2) ceramics with 1 wt% MC and 1 wt% ZBS sintered at 900 °C for 2 h showed excellent dielectric properties: ?r = 53, Q × f = 14,600 GHz, τf = 6 ppm/°C. Moreover, it has a chemical compatibility with silver, which made it as a promising material for low temperature co-fired ceramics technology application.  相似文献   

6.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

7.
(LaxSr1−x)MnO3 (LSMO) and (LaxSr1−x)FeO3 (LSFO) (x = 0.2–0.4) ceramics prepared by a simple and effective reaction-sintering process were investigated. Without any calcination involved, La2O3 and SrCO3 were mixed with MnO2 (LSMO) or Fe2O3 (LSFO) then pressed and sintered directly. LSMO and LSFO ceramics were obtained after 2 and 4 h sintering at 1350–1400 and 1200–1280 °C, respectively. Grain size decreased as La content increased in LSMO and LSFO ceramics.  相似文献   

8.
Ba8(Mg1−xZnx)Nb6O24 (x=0, 0.2, 0.4, 0.6, 0.8 and 1) ceramics were prepared through the conventional solid-state route. The materials were calcined at 1250 °C and sintered at 1375–1425 °C. The structure of the system was analyzed using X-ray diffraction and vibrational spectroscopic studies. The microstructure of the sintered pellet was analyzed using scanning electron microscopy. The dielectric constant (εr), temperature coefficient of resonant frequency (τf) and the unloaded quality factor (Qu) were measured in the microwave frequency region. The τf values of the compositions were reduced by varying the value of x from 0 to 1. The dielectric responses to frequency were also studied in the radio frequency region. The compositions have good microwave dielectric properties and hence are suitable for dielectric resonator applications.  相似文献   

9.
The phenomena of liquid phase sintering in the V2O5 modified (Zr0.8, Sn0.2)TiO4 (ZST) microwave ceramics has been investigated by using transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDS). The amounts of second phase were too low to be detected by X-ray diffraction (XRD), but could be observed by TEM bright field image. However, the presence of grain boundary phases did not degrade the microwave properties of V2O5 modified ZST ceramics. The ?r value of 37.2, Q × f value of 51,000 (at 7 GHz) and τf value of −2.1 ppm/°C were obtained for ZST ceramics with 1 wt% V2O5 addition sintered at 1300 °C.  相似文献   

10.
SnO2-doped CaSiO3 ceramics were successfully synthesized by a solid-state method. Effects of different SnO2 additions on the sintering behavior, microstructure and dielectric properties of Ca(Sn1−xSix)O3 (x=0.5–1.0) ceramics have been investigated. SnO2 improved the densification process and expanded the sintering temperature range effectively. Moreover, Sn4+ substituting for Si4+ sites leads to the emergence of Ca3SnSi2O9 phase, which has a positive effect on the dielectric properties of CaO–SiO2–SnO2 materials, especially the Qf value. The Ca(Sn0.1Si0.9)O3 ceramics sintered at 1375 °C possessed good microwave dielectric properties: εr =7.92, Qf =58,000 GHz and τf=−42 ppm/°C. The Ca(Sn0.4Si0.6)O3 ceramics sintered at 1450 °C also exhibited good microwave dielectric properties of εr=9.27, Qf=63,000 GHz, and τf=−52 ppm/°C. Thus, they are promising candidate materials for millimeter-wave devices.  相似文献   

11.
The microwave dielectric properties of La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics prepared by the conventional solid-state method were investigated for application in mobile communication. A 100 °C reduction of the sintering temperature was obtained by using CuO as a sintering aid. A dielectric constant of 20.0, a quality factor (Q × f) of 50,100 GHz and a temperature coefficient of resonant frequency τf of −78.3 ppm/°C were obtained when La2.98/3Ba0.01(Mg0.5Sn0.5)O3 ceramics with 0.25 wt.% CuO were sintered at 1500 °C for 4 h.  相似文献   

12.
(1 − x)Ba0.4Sr0.6TiO3/xCaCu3Ti4O12 composite ceramics were prepared by spark plasma sintering. Sintering behavior, microstructures and dielectric properties of the composite ceramics were investigated by XRD, SEM, EDS and dielectric spectrometer. Dense composite ceramics consisting of Ba0.4Sr0.6TiO3 phase and CaCu3Ti4O12 phase were prepared at 800 °C for 0 min. The dielectric loss of the composite ceramic decreased with increasing amount of Ba0.4Sr0.6TiO3, and the high dielectric constant were retained. Moreover, the better temperature stability of dielectric constant was obtained. These improvements of dielectric characteristics have great scientific significance for potential application.  相似文献   

13.
(Bi0.5Na0.5)0.94Ba0.06TiO3xHfO2 [BNBT–xHfO2] lead-free ceramics were prepared using the conventional solid-state reaction method. Effects of HfO2 content on their microstructures and electrical properties were systematically studied. A pure perovskite phase was observed in all the ceramics with x=0–0.07 wt%. Adding optimum HfO2 content can induce dense microstructures and improve their piezoelectric properties, and a high depolarization temperature was also obtained. The ceramics with x=0.03 wt% possess optimum electrical properties (i.e., d33~168 pC/N, kp~32.1%, Qm~130, εr~715, tan δ~0.026, and Td~106 °C, showing that HfO2-modified BNBT ceramics are promising materials for piezoelectric applications.  相似文献   

14.
The optical properties and microwave dielectric properties of transparent polycrystalline MgAl2O4 ceramics sintered by spark plasma sintering (SPS) through homemade nanosized MgAl2O4 powders at temperatures between 1250 °C and 1375 °C are discussed. The results indicate that, with increasing sintering temperatures, grain growth and densification occurred up to 1275 °C, and above 1350 °C, rapid grain and pore growth occurred. The in-line light transmission increases with the densification and decreases with the grain/pore growth, which can be as high as 70% at the wavelength of 550 nm and 82% at the wavelength of 2000 nm, respectively. As the sintering temperature increases, Q×f and dielectric constant εr values increase to maximum and then decrease respectively, while τf value is almost independent of the sintering temperatures and remains between −77 and −71 ppm/°C. The optimal microwave dielectric properties (εr=8.38, Q×f=54,000 GHz and τf=−74 ppm/°C) are achieved for transparent MgAl2O4 ceramics produced by spark plasma sintering at 1325 °C for 20 min.  相似文献   

15.
A new ferroelectric solid solution of (1 − x)Ba(Lu1/2Nb1/2)O3-xPbTiO3 (BLN-PT) (0 ≤ x ≤ 1) has been synthesized by solid state reactions. Its structure and electric properties have been studied by X-ray diffraction and di-/ferro-electric measurements. Based on the investigation, a partial solid state phase diagram of the binary BLN-PT ceramics system has been established, which exhibits a morphotropic phase boundary (MPB) region in the composition range of 0.64 ≤ x ≤ 0.68. The Curie temperature is measured to be around 250 °C in the vicinity of the MPB region, which is much higher than that of PMNT or PZNT system. The dielectric behavior has been discussed based on Curie-Weiss Law and Lorentz-type quadratic relationship. With increasing PT content, a transformation from relaxor to ferroelectric phase has been demonstrated in the solid solution system.  相似文献   

16.
The effects of sintering temperature and poling conditions on the electrical properties of tetragonal and orthorhombic diphasic Ba0.70Ca0.30TiO3 (BCT) lead-free ceramics have been systematically investigated. On the one hand, with increasing sintering temperature from 1270 °C to 1400 °C, the bulk density increases monotonically and the Curie temperature keeps almost constant with the value of ∼120 °C, whereas the grain size, the maximum relative dielectric constant, room temperature polarization reach the maximum values for samples sintered at 1340 °C. On the other hand, it is found that the piezoelectric property depends on poling electric field and poling temperature significantly. An enhanced piezoelectric behavior of d33=126 pC/N, kp=0.29, and Qm=588 is obtained for the BCT ceramics poled at 100 °C with 30 kV/cm field for 20 min. The aging behavior of the piezoelectric property is also investigated.  相似文献   

17.
Ni/MgxTi1 − xO catalysts were prepared through a wet impregnation method by dispersing Ni on MgxTi1 − xO composite oxides obtained via a sol–gel technique. The Ni/MgxTi1 − xO catalysts were characterized by various means including ICP–OES, BET, XRD, H2–TPR, SEM, and TG. No free NiO peak was found in all XRD patterns of the Ni/MgxTi1 − xO catalysts. The H2–TPR and chemisorption results indicated that adding Ti to the NiO–MgO system obstructed the formation of solid solution, and thus increased the reducibility of the catalysts. The prepared MgxTi1 − xO composite oxides had the same ability to disperse Ni as TiO2 and MgO. The tri-reforming (simultaneous oxygen reforming, carbon dioxide reforming, and steam reforming) of methane over Ni/MgxTi1 − xO catalysts was carried out in a fixed bed flow reactor. The conversions of CH4 and CO2 can respectively be achieved as high as above 95% and 83% over Ni/Mg0.75Ti0.25O catalyst under the reaction conditions. The activity of Ni/Mg0.75Ti0.25O and Ni/Mg0.5Ti0.5O did not decrease for a reaction period of 50 h, indicating their rather high stability. The experimental results showed that the nature of support, the interaction between metal and support, and the ability to be reduced played an important role in improving the stability of catalysts.  相似文献   

18.
(K0.50Na0.50)0.97Bi0.01(Nb1-xZrx)O3 (KNBNZ) lead-free ceramics were prepared by the conventional solid-state sintering process. Their phase structure is dependent on the Zr content in the investigated range, and the ceramics endure a phase transition from pseudocubic to orthorhombic with increasing Zr content. Improved piezoelectric properties have been observed when the poling temperature is located at ~100 °C because of the coexistence of orthorhombic and tetragonal phases. Their dielectric and piezoelectric properties were enhanced by doping Zr, the ceramic with x=0.02 showing optimal electrical properties, i.e., d33~161 pC/N, kp~0.41, Qm~81, Tc~370 °C, and To−t~130 °C. These results show that the KNBNZ ceramic is a promising lead-free piezoelectric material.  相似文献   

19.
In this study, the effects of CaTiO3 addition on the sintering characteristics and microwave dielectric properties of BiSbO4 were investigated. Pure BiSbO4 achieved a sintered density of 8.46 g/cm3 at 1100 °C. The value of sintered density decreased with increasing CaTiO3, and sintering at a temperature higher than 1100 °C led to a large weight loss (>2 wt%) caused by the volatile nature of the compound. Samples either sintered above 1100 °C or with a CaTiO3 content exceeding 3 wt% showed poor densification. SEM micrographs revealed microstructures with bimodal grain size distribution. The size of the smaller grains ranged from 0.5 to 1.2 μm and that of the larger grains between 3 and 7 μm. The microwave dielectric properties of the (1−x) BiSbO4−x CaTiO3 ceramics are dependent both on the x value and on the sintering temperature. The 99.0 wt% BiSbO4–1.0 wt% CaTiO3 ceramic sintered at 1100 °C reported overall microwave dielectric properties that can be summarized as εr≈21.8, Q×f≈61,150 GHz, and τf≈−40.1 ppm/°C, all superior to those of the BiSbO4 ceramics sintered with other additives.  相似文献   

20.
Microwave dielectric properties of (1 − x)BaZn2Ti4O11-xBaNd2Ti4O12 (x = 0-1.0) ceramics were investigated by the solid-state reaction with the purpose of finding a microwave ceramics with high dielectric constant (?r), high quality factor (Q × f) and low temperature coefficient of resonant frequency (τf). A two phase system BaZn2Ti4O11-BaNd2Ti4O12 was formed and SEM photographs show equiaxed BaZn2Ti4O11 grains and columnar BaNd2Ti4O12 grains. The microwave dielectric properties were strongly determined by the chemical composition. As increasing x from 0 to 1.0, the phase composition varied from pure BaZn2Ti4O11, to the two phase system BaZn2Ti4O11-BaNd2Ti4O12 and then to pure BaNd2Ti4O12. Therefore, the ?r raised from 29.1 to 82.0 and the Q × f values decreased from 54,630 GHz to 8110 GHz, and the τf values increased from −29 ppm/°C to 94 ppm/°C. 0.8BaZn2Ti4O11-0.2BaNd2Ti4O12 ceramics sintered at 1250 °C for 2.5 h had ?r = 39.1, Q × f = 37,850 GHz and τf = −9 ppm/ °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号